M

Physics Physics Department,
Technical University of Denmark
2800 Kongens Lyngby, Denmark

Component Manual for the Neutron
Ray-Tracing Package McStas,
version 3.0

P. Willendrup, E. Farhi, E. Knudsen, U. Filges, K. Lefmann

January, 2026

The software package McStas is a tool for carrying out Monte Carlo ray-tracing sim-
ulations of neutron scattering instruments with high complexity and precision. The
simulations can compute all aspects of the performance of instruments and can thus
be used to optimize the use of existing equipment, design new instrumentation, and
carry out virtual experiments for e.g. training, experimental planning or data analysis.
McStas is based on a unique design where an automatic compilation process translates
high-level textual instrument descriptions into efficient ISO-C code. This design makes
it simple to set up typical simulations and also gives essentially unlimited freedom to
handle more unusual cases.

This report constitutes the reference manual for McStas, and, together with the man-
ual for the McStas components, it contains documentation of most aspects of the pro-
gram. It covers the various ways to compile and run simulations, a description of the
meta-language used to define simulations, and some example simulations performed with
the program.

This report documents McStas version 3.6, released January, 2026

The authors are:

Peter Kjeer Willendrup <pkwi@fysik.dtu.dk>
Physics Department, Technical University of Denmark, Kongens Lyngby,
Denmark

Emmanuel Farhi <emmanuel.farhi@synchrotron-soleil.fr>
Synchrotron SOLEIL, Saint-Aubin, France

Erik Knudsen <erkn@fysik.dtu.dk>
Physics Department, Technical University of Denmark, Kongens Lyngby,
Denmark

Jakob Garde <jaga@fysik.dtu.dk>
Physics Department, Technical University of Denmark, Kongens Lyngby,
Denmark

Kim Lefmann <lefmann@nbi .dk>
Niels Bohr Institute, University of Copenhagen, Denmark

as well as authors who left the project:

Peter Christiansen <pchristi@hep.lu.se>

Materials Research Department, Risg National Laboratory, Roskilde, Den-
mark

Present address: University of Lund, Lund, Sweden

Klaus Lieutenant <klaus.lieutenant@helmholtz-berlin.de>

Institut Laue-Langevin, Grenoble, France

Present address: Helmotlz Zentrum Berlin, Germany

Kristian Nielsen <kristian-nielsen@mail.tele.dk>

Materials Research Department, Risg National Laboratory, Roskilde, Den-
mark

Presently associated with: MySQL AB, Sweden

ISBN 978-87-550-3680-2
ISSN 01062840
Physics Department - DTU - 2026

Contents

[Preface and acknowledgements| 10
(I. About the component library| 12
[1.1. Authorship| 12
[1.2. Symbols for neutron scattering and simulation| 12
[1.3. Component coordinate system|. L. 13
[4. About datafiled. 13
[1.5. Component source code| 14
[[.6. Documentationl 14
[L.7. Component validation| 17
[1.8. Disclaimer, bugs| 17

[2. Monte Carlo Techniques and simulation strategy]| 18
[2.1. Neutron spectrometer simulations|. 18
[2.1.1. Monte Carlo ray tracing simulations| 18

[2.2. The neutron weight|.o o 19
[2.2.1. Statistical errors of non-integer counts| 19

[2.3. Weight factor transformations during a Monte Carlo choice| 20
[2.3.1. Direction focusing| oL 21

[2.4. Adaptive and Stratified sampling| 00000 21
[2.5. Accuracy of Monte Carlo simulations|. 22

[3. Source components| 24
8.0.1. Neutron fluxl 24

[3.1. Source_simple: A simple continuous source with a flat energy /wavelength |

[spectrum| Lo e e e 26
13.2. Source_div: A continuous source with specified divergence| 26
13.3. Source_Maxwell_3: A continuous source with a Maxwellian spectrum| . . . 26
[3.4. Source_gen: A general continuous source| 27
[3.5. Moderator: A time-of-flight source (pulsed) 28
13.6. ISIS_moderator: ISIS pulsed moderators| 29
B.6.1. Introduction| 29

[3.6.2. Using the McStas Module 29

8.6.3. Comparing TS1 and TH2| 30

6.4. Bugs|. e 31

13.7. Source_adapt: A neutron source with adaptive importance sampling] . . . 32
[3.7.1. Optimization disclaimer| 32

[3.7.2. The adaption algorithm| 32
[3.7.3. The implementation|, 34

13.8. Adapt_check: The adaptive importance sampling monitor| 35
13.9. Source_Optimizer: A general Optimizer for Mcdtas| 36
13.9.1. The optimization algorithm| 36
13.9.2. Using the Source_Optimizer| 37
[3.10. Monitor_Optimizer: Optimization locations for the |
oource_Optimizer| Lo e e 38
[3.11. Other sources components: contributed pulsed sources, virtual sources |
(event files)| 39

. Beam optical components: Arms, slits, collimators, and filters| 40
[4.1. Arm: The generic component| 40
[4.2. Slit: A beam defining diaphragm| 40
4.3. Beamstop: A neutron absorbing areal. 41
4.4. Filter_gen: A general filter using a transmission table[. 41
|4.5. Collimator_linear: The simple Soller blade collimator{ 43
[4.5.1. Collimator transmissionl 43
[4.5.2. Algorithm| 44
4.6. Collimator radial: A radial Soller blade collimator] 44
. Reflecting optical components: mirrors, and guides| 46
[5.1. Mirror: The single mirror| 46
p.1.1. Mirror reflectivity] 46
[5.1.2. Algorithm| 47

5.2. Guide: The guide section| 48
[5.2.1. Guide geometry and reflection| 48
[5.2.2. Algorithm| 49

15.3. Guide_channeled: A guide section component with multiple channels| . . . 51
[5.3.1. Algorithm| 51
[5.3.2. Known problems| 0 o 51

b.4. Guide_gravity: A guide with multiple channels and gravitation handling] . 52
[5.5. Bender: a bender model (non polarizing)|. 52
b.6. Curved guides|. 53
Moving optical components: Choppers and velocity selectors| 55
[6.1. DiskChopper: The disc chopper|{. 55
16.2. FermiChopper: The Fermi-chopper| 57
16.2.1. The chopper geometry and parameters|. Y
|6.2.2. Propagation in the Fermi-chopper| 58

16.3. Vitess_ChopperFermi: The Fermi Chopper from Vitess| 62
[6.4. 'V _selector: A rotating velocity selector| 65
16.4.1. Velocity selector transmission| 66

16.5. Selector: another approach to describe a rotating velocity selector| 66

(. _Monochromators| 68
[7.1. Monochromator_flat: An infinitely thin, flat mosaic crystal with a single |
scattering vector|o 68
[7.1.1. Monochromator physics and algorithm|. 68

[7.2. Monochromator_curved: A curved mosaic crystal with a single scattering |
vector] 71

[7.3. Single_crystal: Thick single crystal monochromator plate with multiple |
scattering| L e e 72

[7.4. Phase space transtormer - moving monochromator| 72
8. Samples 74
[8.0.1. Neutron scattering notation| 74
[8.0.2. Weight transformation in samples; focusing| 75
18.0.3. Future development of sample components| 7

[8.1. Incoherent: An incoherent scatterer, the V-sample| 7
[8.1.1. Physics and algorithm| 78
[8.1.2. Remark on functionality| 78

[8.2. Tunneling_sample: An incoherent inelastic scatterer|. 79
[8.3. PowderN: A general powder samplel. L. 80
[8.3.1. Files formats: powder structures| 80
18.3.2. Geometry, physical properties, concentricity| 81
18.3.3. Powder scattering] L. 82
[8.3.4. Algorithm| 84

[8.4. Single_crystal: The single crystal component|. 85
[8.4.1. The physical model|. 85
[8.4.2. The algorithm| 88
18.4.3. Choosing the outgoing wave vector| 89
[8.4.4. Computing the total coherent cross-section| 90
[8.4.5. Implementation details|. 92

[8.5. Sans_spheres: A sample of hard spheres for small-angle scattering 94
18.5.1. Small-angle scattering cross section|. 94
[8.5.2. Algorithm| o 94
[8.5.3. Calculating the weight factor] 95

[8.6. Phonon_simple: A simple phonon sample|. 96
[8.6.1. The phonon cross section| 96
[8.6.2. The algorithm| 97
[8.6.3. The weight transtormation| 97

[8.7. Isotropic_Sqw: A general S(g,w) coherent and incoherent scatterer| 99
8.7.1. Neutron interaction with matter - overviewl 100
872, Theoretical sidel.o 101
[8.7.3. Theoretical side - scattering in the sample] 102
[8.7.4. The implementation| 108
8.75. Validationl. 112

9. Monitors and detectorsl 114

[9.1. TOF _monitor: The time-of-flight monitor| 115
[9.2. TOF2E _monitor: A time-of-flight monitor with simple energy analysis| . . 115
9.3. E_monitor: The energy-sensitive monitor|{. 115
9.4. L_monitor: The wavelength sensitive monitor| 116
9.5, PSD monitor: The PSD monitor] oL 116
[9.6. Divergence_monitor: A divergence sensitive monitor| 116
19.7. DivPos_monitor: A divergence and position sensitive monitor| 117
[9.8. Monitor_nD: A general Monitor for 0D/1D/2D records| 118
[9.8.1. The Monitor nD geometry|. 118
19.8.2. The neutron parameters that can be monitored| 119
[9.8.3. Important options| 120
9.8.4. The output files| o 120
[9.8.5. Monitor equivalences| 121
9.8.6. Usage examples|. L oL 121
9.8.7. Monitoring user variables| 123
19.8.8. Monitoring neutron parameter correlations, PreMonitor nD| 125
[10.Special-purpose components| 127
[10.1. Virtual_output: Saving the first part of a split simulation| 128
[10.2. Virtual_input: Starting the second part of a split simulation| 128
[10.3. Res_sample: A sample-like component for resolution calculation| 129
[10.4. TOF _Res_sample: A sample-like component for TOF resolution calculation|129
(10.5. Res monitor: The monitor for resolution calculationl 130
[10.6. Progress_bar: Simulation progress and automatic savingl 132
[10.7. Beam_spy: A beam analyzer|. 132
|A. Polarization in McStasl 133
[A. L Introductionl. oL L 133
[A.2. The Polarization Vectorl 133
|A.2.1. Example: Magnetic fields|, 135
|A.3. Polarized Neutron Scattering] 136
|[A.3.1. Example: Nuclear scatteringl 137
|A.3.2. Example: Polarizing Monochromator and Guides| 138

|A.4. New Mchtas Components| oL 140
[A.4.1. Polarizersl 140
[A42, Detectors 141
[A.4.3. Magneticfields] 142
[Ad.4. Samples|o 142

A5, Tests With New Components| 142
[B._Libraries and constants| 144
[B.1. Run-time calls and functions (mcstas-r)[. 144
IB.1.1. Neutron propagation| 144

IB.1.3. Coordinate transformations 147

B.1.4. Mathematical routines 147

IB.1.5. Output from detectors| 148

IB.1.6. Ray-geometry intersections| 148

IB.1.7. Random numbersl.o 148

[B.2. Reading a data file into a vector/matrix (Table input, read table-1ib)| . 149
IB.3. Monitor_nD Library| 152
IB.4. Adaptive importance sampling Library|. 152
[B.5. Vitess import/export Library| 152
[B.6. Constants for unit conversion eteJ. 152

[C. The McStas terminology| 154
[Bibliography| 155
[Tndex and keywords| 156

Preface and acknowledgements

This document contains information on the neutron scattering components which are
the building blocks for defining instruments in the Monte Carlo neutron ray-tracing
program McStas version 3.6. The initial release in October 1998 of version 1.0 was
presented in Ref. [LN99] and further developed though version 2.0 as presented in Ref.
IWil+14]. The reader of this document is not supposed to have specific knowledge of
neutron scattering, but some basic understanding of physics is helpful in understanding
the theoretical background for the component functionality. For details about setting up
and running simulations, we refer to the McStas system manual [Wil+05]. We assume
familiarity with the use of the C programming language.

It is a pleasure to thank Dir. Kurt N. Clausen, PSI, for his continuous support to
McStas and for having initiated the project. Continuous support to McStas has also
come from Prof. Robert McGreevy, ISIS. Apart from the authors of this manual, also
Per-Olof Astrand, NTNU Trondheim, has contributed to the development of the McStas
system. We have further benefited from discussions with many other people in the
neutron scattering community, too numerous to mention here.

The users who contributed components to this manual are acknowledged as authors
of the individual components. We encourage other users to contribute components with
manual entries for inclusion in future versions of McStas.

In case of errors, questions, or suggestions, do not hesitate to contact the authors
at mcstas@risoe.dk or consult the McStas home page [Mcs|. A special bug/request
reporting service is available |Git].

We would like to kindly thank all McStas component contributors. This is the way
we improve the software alltogether.

The McStas project has been supported by the European Union through“XENNI /
Cool Neutrons” (FP4), “SCANS” (FP5), “nmi3/MCNSI” (FP6), “nmi3-ii/E-learning”
and “nmi3-ii/MCNSI7” (FP7) [Nmi; Mcna]. McStas was supported directly from the
construction project for the ISIS second target station (T'S2/EU), see [T's2|. Currently
McStas is supported through the Danish involvement in the Data Management and
Software Center, a subdivision of the European Spallation Source (ESS), see [Ess|] and
the European Union through “SINE2020/WP3 e-elarning” and and “SINE2020/WP8
e-Tools” (Horizon2020). the home pages [Sin].

If you appreciate this software, please subscribe to the neutron-mc@risoe.dk email
list, send us a smiley message, and contribute to the package. We also encourage you to
refer to this software when publishing results, with the following citations:

e P. Willendrup, E. Farhi, E. Knudsen, U. Filges and K. Lefmann, Journal of Neutron
Research, 17 (2014) 35.

10

e K. Lefmann and K. Nielsen, Neutron News 10/3, 20, (1999).

e P. Willendrup, E. Farhi and K. Lefmann, Physica B, 350 (2004) 735.

11

1. About the component library

This McStas Component Manual consists of the following major parts:
e An introduction to the use of Monte Carlo methods in McStas.

e A thorough description of system components, with one chapter per major cate-
gory: Sources, optics, monochromators, samples, monitors, and other components.

e The McStas library functions and definitions that aid in the writing of simulations
and components in Appendix

e An explanation of the McStas terminology in Appendix [C|

Additionally, you may refer to the list of example instruments from the library in the
McStas User Manual.

1.1. Authorship

The component library is maintained by the McStas system group. A number of basic
components “belongs” the McStas system, and are supported and tested by the McStas
team.

Other components are contributed by specific authors, who are listed in the code for
each component they contribute as well as in this manual. McStas users are encouraged
to send their contributions to us for inclusion in future releases.

Some contributed components have later been taken over for further development
by the McStas system group, with permission from the original authors. The original
authors will still appear both in the component code and in the McStas manual.

1.2. Symbols for neutron scattering and simulation

In the description of the theory behind the component functionality we will use the usual
symbols r for the position (z,y, z) of the particle (unit m), and v for the particle velocity
(vz, vy, vz) (unit m/s). Another essential quantity is the neutron wave vector k = my,v/h
, where my, is the neutron mass. k is usually given in A=, while neutron energies are
given in meV. The neutron wavelength is the reciprocal wave vector, A = 27/k. In
general, vectors are denoted by boldface symbols.

Subscripts ”i” and ”f’ denotes “initial” and “final”, respectively, and are used in
connection with the neutron state before and after an interaction with the component
in question.

12

The spin of the neutron is given a special treatment. Despite the fact that each
physical neutron has a well defined spin value, the McStas spin vector s can have any
length between zero (unpolarized beam) and unity (totally polarized beam). Further, all
three cartesian components of the spin vector are present simultaneously, although this is
physically not permitted by quantum mechanics. For further details about polarization
handling, you may refer to the Appendix [A]

1.3. Component coordinate system

All mentioning of component geometry refer to the local coordinate system of the in-
dividual component. The axis convention is so that the z axis is along the neutron
propagation axis, the y axis is vertical up, and the = axis points left when looking along
the z-axis, completing a right-handed coordinate system. Most components 'position’
(as specified in the instrument description with the AT keyword) corresponds to their
input side at the nominal beam position. However, a few components are radial and
thus positioned in their centre.

Components are usually not designed to overlap. This may lead to loss of neutron
rays. Warnings will be issued during simulation if sections of the instrument are not
reached by any neutron rays, or if neutrons are removed. This is usually the sign of
either overlapping components or a very low intensity.

1.4. About data files

Some components require external data files, e.g. lattice crystallographic definitions
for Laue and powder pattern diffraction, S(g,w) tables for inelastic scattering, neutron
events files for virtual sources, transmission and reflectivity files, etc.

Such files distributed with McStas are located in the data sub-directory of the McStas
library. Components that make use of the McStas file system, including the read-table
library (see section [B.2)) may access all McStas data files without making local copies.
Of course, you are welcome to define your own data files, and eventually contribute to
McStas if you find them useful.

File extensions are not compulsory but help in identifying relevant files per application.
We list powder and liquid data files from the McStas library in Tables and
These files contain an extensive header describing physical properties with references,
and are specially suited for the PowderN (see and Isotropic_Sqw components (see
[B.7). Whenever using any S(g,w) data for the Isotropic_Sqw component, we kindly
request to cite the corresponding reference.

McStas itself generates both simulation and monitor data files, which structure is
explained in the User Manual (see end of chapter 'Running McStas’).

13

[N

MCSTAS /data Description

* lau Laue pattern file, as issued from Crystallographica. For use
with Single_crystal, PowderN, and Isotropic_.Sqw. Data: [h k
1 Mult. d-space 2Theta F-squared |

* laz Powder pattern file, as obtained from Lazy/ICSD. For use
with PowderN, Isotropic_Sqw and possibly Single_crystal.

* trm transmission file, typically for monochromator crystals and
filters. Data: [k (Angs-1) , Transmission (0-1)]

*rfl reflectivity file, typically for mirrors and monochromator crys-
tals. Data: [k (Angs-1) , Reflectivity (0-1) |

* . sqw S(q,w) files for Isotropic.Sqw component. Data: [q] [w]
[S(gq, w)]

Table 1.1.: Data files of the McStas library.

1.5. Component source code

Source code for all components may be found in the MCSTAS library subdirectory of
the McStas installation; the default is /usr/local/lib/mcstas/ on Unix-like systems
and C:\mcstas\lib on Windows systems, but it may be changed using the MCSTAS
environment variable.

In case users only require to add new features, preserving the existing features of a
component, using the EXTEND keyword in the instrument description file is recommended.
For larger modification of a component, it is advised to make a copy of the component
file into the working directory. A component file in the local directory will in McStas
take precedence over a library component of the same name.

1.6. Documentation

As a complement to this Component Manual, we encourage users to use the mcdoc
front-end which enables to display both the catalog of the McStas library, e.g using:

mcdoc I

as well as the documentation of specific components, e.g with:

mcdoc —text <name>
mcdoc <file .comp>

The first line will search for all components matching the name, and display their help
section as text. For instance, mcdoc .laz will list all available Lazy data files, whereas
mcdoc --text Monitor will list most Monitors. The second example will display the
help corresponding to the file.comp component, using your BROWSER setting, or as
text if unset. The --help option will display the command help, as usual.

14

MCSTAS/data Ocoh Cinc Cabs T ¢ | Note
File name [barns] [barns] [barns] K] [m/s]
Ag.laz 4.407 0.58 63.3 1234.9 2600
Al203_sapphire.laz | 15.683 0.0188 0.4625 2273

Al.laz 1.495 0.0082 0.231 933.5 5100 | .lau
Au.laz 7.32 043 98.65 | 13374 1740
B4C.laz 19.71 6.801 3068 2718

Ba.laz 3.23 0.15 29.0 1000 1620
Be.laz 7.63 0.0018 0.0076 1560 13000
BeO.laz 11.85 0.003 0.008 2650 Jau
Bi.laz 9.148 0.0084 0.0338 544.5 1790
C60.1au 5.551 0.001 0.0035

C_diamond.laz 5.551 0.001 0.0035 4400 18350 | .lau
C_graphite.laz 5.051 0.001 0.0035 3800 18350 | .lau
Cd.laz 3.04 3.46 2520 594.2 2310
Cr.laz 1.660 1.83 3.05 2180 5940
Cs.laz 3.69 0.21 29.0 301.6 1090 | cin liquid
Cu.laz 7.485 0.55 3.78 | 1357.8 3570
Fe.laz 11.22 0.4 2.56 1811 4910
Ga.laz 6.675 0.16 2.75 302.91 2740
Gd.laz 29.3 151 49700 1585 2680
Ge.laz 8.42 0.18 2.2 12114 5400
H20_ice_1h.laz 7.75 160.52 0.6652 273

Hg.laz 20.24 6.6 372.3 234.32 1407
12.]az 7.0 0.62 12.3 386.85

In.laz 2.08 0.54 193.8 429.75 1215
K.laz .69 0.27 2.1 | 336.53 2000

LiF .laz 4.46 0.921 70.51 1140

Lilaz 0.454 0.92 70.5 | 453.69 6000
Nb.laz 8.57 0.0024 1.15 2750 3480
Ni.laz 13.3 5.2 4.49 1728 4970
Pb.laz 11.115 0.003 0.171 600.61 1260
Pd.laz 4.39 0.093 6.9 | 1828.05 3070
Pt.laz 11.58 0.13 10.3 2041.4 2680
Rb.laz 6.32 0.5 0.38 312.46 1300
Se_alpha.laz 7.98 0.32 11.7 494 3350
Se_beta.laz 7.98 0.32 11.7 494 3350
Si.laz 2.163 0.004 0.171 1687 2200
SiO2_quartza.laz 10.625 0.0056 0.1714 846 Jau
SiO2_quartzb.laz 10.625 0.0056 0.1714 1140 Jau
Sn_alpha.laz 4.871 0.022 0.626 505.08

Sn_beta.laz 4.871 0.022 0.626 505.08 2500
Ti.laz 1.485 2.87 6.09 1941 4140
Tl.laz 9.678 0.21 3.43 577 818
V.laz 0184 4.935 5.08 2183 4560
Zn.laz 4.064 0.077 1.11 | 692.68 3700
Zr.laz 6.44 0.02 0.185 2128 3800

Table 1.2.: Powders of the McStas library [Ics; DL03]. Low ¢ and high o,s materials
are highlighted. Files are given in LAZY format, but may exist as well in
Crystallographica .lau format as well.

15

MCSTAS/data

File name

Ocoh
[barns]

Oinc
[barns]

Oabs
[barns]

K]

[m/s]

Note

Cs_liq-tot.sqw

D2 liq-21_tot.sqw

D2_pow_21_tot.sqw

D20 liq_290_coh and D_liq_290_inc

D20_1iq-290_tot

Ge_lig_coh.sqw and Ge_lig_inc.sqw

H201iq_290_coh and H20_liq_290_inc

H20_1iq-290_tot

He4 _liq_coh.sqw

He4 liq_1_coh.sqw

Ne_lig_tot.sqw

16

Rb_lig_coh.sqw and Rb_liq_inc.sqw

3.69

7.64

7.64

15.4

15.4

8.42

7.75

7.75

1.34

1.34

2.62

6.32

0.21

4.1

4.1

0.18

161

161

0.008

0.5

29.0

0.00052

0.00052

0.0012

0.0012

2.2

0.665

0.665

0.00747

0.00747

0.039

0.38

301.6

21

12

290

290

1211.4

290

290

24.56

312.46

1090

5400

1530

1530

240

240

591

1300

liquid cesium. Bo-
densteiner et al,
Phys. Rev. A, 45
(1992) 5709 and 46
(1992) 3574.

liquid deuterium.
Measured. Frei
et al, PHYSICAL
REVIEW B 80
(2009) 064301
powder deuterium.
Measured. Frei
et al, PHYSICAL
REVIEW B 80
(2009) 064301
liquid heavy water.
Classical MD. E.
Farhi et al, J. Nucl.
Sci. Tech. (2015)
liquid heavy water.
Measured. E. Farhi
et al, J. Nucl. Sci.
Tech. (2015)
liquid germanium.
Ab-initio MD.
Hugouvieux V,
Farhi E, Johnson
MR, et al., PRB
75 (2007) 104208
liquid water. Clas-
sical MD. E. Farhi
et al, J. Nucl. Sci.
Tech. (2015)
liquid water. Mea-
sured. E. Farhi et
al, J. Nucl. Sci.
Tech. (2015)
liquid helium.
Measured (con-
stant width). R.J.
Donnelly et al., J.
Low Temp. Phys.,
44 (1981) 471
liquid helium.
Measured. K.
Andersen et al, J
Phys Cond Mat, 6
(1994) 821

liquid neon. Mea-
sured. Buyers,
Sears et al, Phys
Rev A 11 (1975)
697
liquid rubid-
ium. Classical
MD. E. Farhi,
V. Hugouvieux,
M.R. Johnson,
W. Kob, Journal
of Computational
Physics 228 (2009)

An overview of the component library is also given at the McStas home page [Mcs]
and in the User Manual [Wil4-05].

1.7. Component validation

Some components were checked for release 1.9: the Fermi choppers, the velocity selectors,
2 of the guide components and Source_gen. The results are sumarized in a talk available
online (http://www.ill.fr/tas/mcstas/doc/ValMcStas.pdf).

Velocity selector and Fermi chopper were treated as black boxes and the resulting
line shapes cross-checked against analytical functions for some cases. The component
"Selector’ showed no dependence on the distance between guide and selector axe. This is
corrected at the moment. Apart from that the component yielded correct results. That
was different with the Fermi chopper components. The component ’Chopper_Fermi’,
which has been part of the McStas distribution for a long time, gave wrong results and
was removed from the package. The new ’Vitess_ChopperFermi’ (transferred from the
VITESS package) showed mainly correct behaviour. Little bugs were corrected after the
first tests. At the moment, there is only the problem left that it underestimates the
influence of a shadowing cylinder. With the contributed 'FermiChopper’ component,
there were also minor problems, which are all corrected in the meantime.

For the guides, several trajectories through different kinds of guides (straight, con-
vergent, divergent) were calculated analytically and positions, directions and losses of
reflections compared to the values calculated in the components. This was done for
"Guide’ and 'Guide_gravity’; in the latter case calculations were performed with and
without gravity. Additionally a cross-check against the VITESS guide module was per-
formed. Waviness, chamfers and channels were not checked. After correction of a bug
in ’Guide_gravity’, both components worked perfectly (within the conditions tested).

"Source_gen’ was cross-checked against the VITESS source module for the case of 3
Maxwellians describing the moderator characteristic and typical sizes the guide and its
distance to the moderator. It showed the same line shape as a functions of wavelength
and divergence and the same absolute values.

1.8. Disclaimer, bugs

We would like to emphasize that the usage of both the McStas software, as well as
its components are the responsability of the users. Indeed, obtaining accurate and
reliable results requires a substantial work when writing instrument descriptions. This
also means that users should read carefully both the documentation from the manuals
[Wil4+-05] and from the component itself (using mcdoc comp) before reporting errors.
Most anomalous results often originate from a wrong usage of some part of the package.

Anyway, if you find that either the documentation is not clear, or the behavior of the
simulation is undoubtedly anomalous, you should report this to us at mcstas@risoe.dk
and refer to our special bug/request reporting service [Git|.

17

2. Monte Carlo Techniques and simulation
strategy

This chapter explains the simulation strategy and the Monte Carlo techniques used
in McStas. We first explain the concept of the neutron weight factor, and discuss the
statistical errors in dealing with sums of neutron weights. Secondly, we give an expression
for how the weight factor transforms under a Monte Carlo choice and specialize this to the
concept of direction focusing. Finally, we present a way of generating random numbers
with arbitrary distributions. More details are available in the Appendix concerning
random numbers.

2.1. Neutron spectrometer simulations

2.1.1. Monte Carlo ray tracing simulations

The behavior of a neutron scattering instrument can in principle be described by a
complex integral over all relevant parameters, like initial neutron energy and divergence,
scattering vector and position in the sample, etc. However, in most relevant cases, these
integrals are not solvable analytically, and we hence turn to Monte Carlo methods. The
neutron ray-tracing Monte Carlo method has been used widely for guide studies |[Cop93;
Far+02} |Sch-+04], instrument optimization and design [ZLa04; Lie05]. Most of the time,
the conclusions and general behavior of such studies may be obtained using the classical
analytic approaches, but accurate estimates for the flux, resolution and generally the
optimum parameter set, benefit considerably from MC methods.

Mathematically, the Monte-Carlo method is an application of the law of large numbers
[Jam80; |GRR92|. Let f(u) be a finite continuous integrable function of parameter u
for which an integral estimate is desirable. The discrete statistical mean value of f
(computed as a series) in the uniformly sampled interval a < uw < b converges to the
mathematical mean value of f over the same interval.

b
nml_ 3 f(ui):bia/ F(u)du (2.1)

In the case were the wu; values are regularly sampled, we come to the well known
midpoint integration rule. In the case were the w; values are randomly (but uniformly)
sampled, this is the Monte-Carlo integration technique. As random generators are not
perfect, we rather talk about quasi-Monte-Carlo technique. We encourage the reader to
consult James |Jam80| for a detailed review on the Monte-Carlo method.

18

2.2. The neutron weight

A totally realistic semi-classical simulation will require that each neutron is at any time
either present or lost. In many instruments, only a very small fraction of the initial
neutrons will ever be detected, and simulations of this kind will therefore waste much
time in dealing with neutrons that never hit the relevant detector or monitor.

An important way of speeding up calculations is to introduce a neutron ”weight factor”
for each simulated neutron ray and to adjust this weight according to the path of the ray.
If e.g. the reflectivity of a certain optical component is 10%, and only reflected neutrons
ray are considered later in the simulations, the neutron weight will be multiplied by 0.10
when passing this component, but every neutron is allowed to reflect in the component.
In contrast, the totally realistic simulation of the component would require in average
ten incoming neutrons for each reflected one.

Let the initial neutron weight be py and let us denote the weight multiplication factor
in the j'th component by m;. The resulting weight factor for the neutron ray after
passage of the n components in the instrument becomes the product of all contributions

n
P:Pn:ponﬂj- (22)
j=1

Each adjustment factor should be 0 < m; < 1, except in special circumstances, so that
total flux can only decrease through the simulation, see section For convenience,
the value of p is updated (within each component) during the simulation.

Simulation by weight adjustment is performed whenever possible. This includes

e Transmission through filters and windows.

e Transmission through Soller blade collimators and velocity selectors (in the ap-
proximation which does not take each blade into account).

¢ Reflection from monochromator (and analyzer) crystals with finite reflectivity and
mosaicity.

e Reflection from guide walls.
e Passage of a continuous beam through a chopper.

e Scattering from all types of samples.

2.2.1. Statistical errors of non-integer counts

In a typical simulation, the result will consist of a count of neutrons histories ("rays”)
with different weights. The sum of these weights is an estimate of the mean number of
neutrons hitting the monitor (or detector) per second in a “real” experiment. One may
write the counting result as

19

where N is the number of rays hitting the detector and the horizontal bar denotes
averaging. By performing the weight transformations, the (statistical) mean value of
I is unchanged. However, N will in general be enhanced, and this will improve the
accuracy of the simulation.

To give an estimate of the statistical error, we proceed as follows: Let us first for
simplicity assume that all the counted neutron weights are almost equal, p; ~ p, and
that we observe a large number of neutrons, N > 10. Then N almost follows a normal
distribution with the uncertainty o(N) = v/N [!| Hence, the statistical uncertainty of
the observed intensity becomes

o(I)=VNp=1I/VN, (2.4)

as is used in real neutron experiments (where p = 1). For a better approximation we
return to Eq. (2.3). Allowing variations in both N and p, we calculate the variance of
the resulting intensity, assuming that the two variables are statistically independent:

o*(I) = o*(N)p* + N?0*(p). (2.5)

Assuming as before that N follows a normal distribution, we reach o?(N)p? = Np°.
Further, assuming that the individual weights, p;, follow a Gaussian distribution (which
in some cases is far from the truth) we have N202(p) = 0%(>_, pi) = No*(p;) and reach

o*(I) = N (p* + o*(pi)) - (2.6)

The statistical variance of the p;’s is estimated by o*(p;) ~ (3, p? — Np?)/(N —1). The
resulting variance then reads

(1) = 1 <zp% —p2> . (2.7)

For almost any positive value of N, this is very well approximated by the simple expres-
sion

£m~2ﬁ. (2.8)

As a consistency check, we note that for all p; equal, this reduces to eq. (2.4))
In order to compute the intensities and uncertainties, the monitor/detector compo-
nents in McStas will keep track of N =, p?, I =", p}, and My = Y, p2.

2.3. Weight factor transformations during a Monte Carlo

choice

When a Monte Carlo choice must be performed, e.g. when the initial energy and direction
of the neutron ray is decided at the source, it is important to adjust the neutron weight

1This is not correct in a situation where the detector counts a large fraction of the neutron rays in the
simulation, but we will neglect that for now.

20

so that the combined effect of neutron weight change and Monte Carlo probability of
making this particular choice equals the actual physical properties we like to model.

Let us follow up on the simple example of transmission. The probability of trans-
mitting the real neutron is P, but we make the Monte Carlo choice of transmitting the
neutron ray each time: fyc = 1. This must be reflected on the choice of weight mul-
tiplier m; = P. Of course, one could simulate without weight factor transformation, in
our notation written as fyic = P,m; = 1. To generalize, weight factor transformations
are given by the master equation

fuem; = P. (2.9)

This probability rule is general, and holds also if, e.g., it is decided to transmit only
half of the rays (fuc = 0.5). An important different example is elastic scattering from a
powder sample, where the Monte-Carlo choices are the particular powder line to scatter
from, the scattering position within the sample and the final neutron direction within the
Debye-Scherrer cone. This weight transformation is much more complex than described
above, but still boils down to obeying the master transformation rule

2.3.1. Direction focusing

An important application of weight transformation is direction focusing. Assume that
the sample scatters the neutron rays in many directions. In general, only neutron rays
in some of these directions will stand any chance of being detected. These directions
we call the interesting directions. The idea in focusing is to avoid wasting computation
time on neutrons scattered in the other directions. This trick is an instance of what in
Monte Carlo terminology is known as importance sampling.

If e.g. a sample scatters isotropically over the whole 47 solid angle, and all interesting
directions are known to be contained within a certain solid angle interval A2, only these
solid angles are used for the Monte Carlo choice of scattering direction. This implies
fmc(AQ) = 1. However, if the physical events are distributed uniformly over the unit
sphere, we would have P(AQ) = AQ/(4r), according to Eq. (2.9). One thus ensures
that the mean simulated intensity is unchanged during a ”correct” direction focusing,
while a too narrow focusing will result in a lower (i.e. wrong) intensity, since we cut
neutrons rays that should have reached the final detector.

2.4. Adaptive and Stratified sampling

Another strategy to improve sampling in simulations is adaptive importance sampling
(also called variance reduction technique), where McStas during the simulations will de-
termine the most interesting directions and gradually change the focusing according to
that. Implementation of this idea is found in the Source_adapt and Source_Optimizer
components.

An other class of efficiency improvement technique is the so-called stratified sampling.
It consists in partitioning the event distributions in representative sub-spaces, which are
then all sampled individually. The advantage is that we are then sure that each sub-space

21

Figure 2.1.: Illustration of the effect of direction focusing in McStas. Weights of neutrons
emitted into a certain solid angle are scaled down by the full unit sphere
area.

is well represented in the final integrals. This means that instead of shooting N events,
we define D partitions and shoot r = N/D events in each partition. In conjunction
with adaptive sampling, we may define partitions so that they represent ’interesting’
distributions, e.g. from events scattered on a monochromator or a sample. The sum of
partitions should equal the total space integrated by the Monte Carlo method, and each
partition must be sampled randomly.

In the case of McStas, an ad-hoc implementation of adaptive stratified is used when re-

peating events, such as in the Virtual sources (Virtual_input, Vitess_input, Virtual_ menp_input,

Virtual_tripoli4_input) and when using the SPLIT keyword in the TRACE section on
instrument descriptions. We emphasize here that the number of repetitions r should
not exceed the dimensionality of the Monte Carlo integration space (which is d = 10
for neutron events) and the dimensionality of the partition spaces, i.e. the number of
random generators following the stratified sampling location in the instrument.

2.5. Accuracy of Monte Carlo simulations

When running a Monte Carlo, the meaningful quantities are obtained by integrating
random events into a single value (e.g. flux), or onto an histogram grid. The theory
[Jam80] shows that the accuracy of these estimates is a function of the space dimension
d and the number of events V. For large numbers IV, the central limit theorem provides
an estimate of the relative error as 1/ V/N. However, the exact expression depends on
the random distributions.

22

Records | Accuracy
103 10 %
104 2.5 %
10° 1%
106 0.25 %
107 0.05 %

Table 2.1.: Accuracy estimate as a function of the number of statistical events used to
estimate an integral with McStas.

McStas uses a space with d = 10 parameters to describe neutrons (position, velocity,
spin, time). We show in Table a rough estimate of the accuracy on integrals as a
function of the number of records reaching the integration point. This stands both for
integrated flux, as well as for histogram bins - for which the number of events per bin
should be used for N.

23

N O Utk W

3. Source components

McStas contains a number of different source components, and any simulation will usu-
ally contain exactly one of these sources. The main function of a source is to determine
a set of initial parameters (r,v,t) for each neutron ray. This is done by Monte Carlo
choices from suitable distributions. For example, in most present sources the initial posi-
tion is found from a uniform distribution over the source surface, which can be chosen to
be either circular or rectangular. The initial neutron velocity is selected within an inter-
val of either the corresponding energy or the corresponding wavelength. Polarization is
not relevant for sources, and we initialize the neutron average spin to zero: s = (0,0,0).
For time-of-flight sources, the choice of the emission time, ¢, is being made on basis of
detailed analytical expressions. For other sources, t is set to zero. In the case one would
like to use a steady state source with time-of-flight settings, the emission time of each
neutron ray should be determined using a Monte Carlo choice. This may be achieved
by the EXTEND keyword in the instrument description source as in the example below:

TRACE

COMPONENT MySource=Source_gen (...) AT (...)
EXTEND
7{

t = le—3srandpml(); /* set time to +/— 1 ms x/
70}

3.0.1. Neutron flux

The flux of the sources deserves special attention. The total neutron intensity is defined
as the sum of weights of all emitted neutron rays during one simulation (the unit of total
neutron weight is thus neutrons per second). The flux, ¢, at an instrument is defined as
intensity per area perpendicular to the beam direction.

The source flux, ®, is defined in different units: the number of neutrons emitted per
second from a 1 cm? area on the source surface, with direction within a 1 ster. solid
angle, and with wavelength within a 1 A interval. The total intensity of real neutrons
emitted towards a given diaphragm (units: n/sec) is therefore (for constant ®):

Itotal — @AAQA)\, (31)
where A is the source area, A} is the solid angle of the diaphragm as seen from the

source surface, and A\ is the width of the wavelength interval in which neutrons are
emitted (assuming a uniform wavelength spectrum).

24

sources

"ILIIIJ

z/[m] 0-0.05 0 0.050.1
x/[m]

Figure 3.1.: A circular source component (at z=0) emitting neutron events randomly,
either from a model, or from a data file.

The simulations are performed so that detector intensities are independent of the
number of neutron histories simulated (although more neutron histories will give better
statistics). If Ngp, denotes the number of neutron histories to simulate, the initial
neutron weight py must be set to

0= Ntotal _ (ID()\)

AQAN 3.2
Nsim Nsim ’ ()

where the source flux is now given a A-dependence.

As a start, we recommend new McStas users to use the Source_simple component.
Slightly more realistic sources are Source_Maxwell_3 for continuous sources or Mod-
erator for time-of-flight sources.

Optimizers can dramatically improve the statistics, but may occasionally give wrong
results, due to misleaded optimization. You should always check such simulations with
(shorter) non-optimized ones.

Other ways to speed-up simulations are to read events from a file. See section for
details.

25

3.1. Source_simple: A simple continuous source with a flat
energy/wavelength spectrum

Input Parameters for component Source_simple from sources

l|<Parameter = value>, [Unit], Description

This component is a simple source with an energy distribution which is uniform in
the range Fy + dE (alternatively: a wavelength distribution in the range Ao = d\). This
component is not used for detailed time-of-flight simulations, so we put ¢ = 0 for all
neutron rays.

The initial neutron ray position is chosen randomly from within a circle of radius rg
in the z = 0 plane. This geometry is a fair approximation of a cylindrical cold/thermal
source with the beam going out along the cylinder axis.

The initial neutron ray direction is focused onto a rectangular target of width w,
height h, parallel to the zy plane placed at (0,0, zfoc).

The initial weight of the created neutron ray, pg, is set to the energy-integrated flux,
U times the source area, 777“52 times a solid-angle factor, which is basically the solid angle
of the focusing rectangle. See also the section [3.0.1] on source flux.

This component replaces the obsolete components Source_flux_lambda, Source_flat,
Source_flat_lambda, and Source_flux.

3.2. Source_div: A continuous source with specified divergence

Input Parameters for component Source_div from sources

1|<Parameter = value>, [Unit], Description

Source_div is a rectangular source, w x h, which emits a beam of a specified divergence
around the direction of the z axis. The beam intensity is uniform over the whole of the
source, and the energy (or wavelength) distribution of the beam is uniform over the
specified energy range Fy+ AFE (in meV), or alternatively the wavelength range Ao £ 0
(in A).

The source divergences are dp, and J, (FWHM in degrees). If the gauss flag is set to
0 (default), the divergence distribution is uniform, otherwise it is Gaussian.

This component may be used as a simple model of the beam profile at the end of a
guide or at the sample position.

3.3. Source_Maxwell 3: A continuous source with a
Maxwellian spectrum

Input Parameters for component Source_Maxwell_3 from sources

26

1|<Parameter = value>, [Unit], Description I

This component is a source with a Maxwellian energy /wavelength distribution sampled
in the range Ajgw to Apjgn. The initial neutron ray position is chosen randomly from
within a rectangle of area h X w in the z = 0 plane. The initial neutron ray direction
is focused within a solid angle, defined by a rectangular target of width zw, height yh,
parallel to the xy plane placed at (0,0, dge). The energy distribution used is a sum of
1, 2, or 3 Maxwellians with temperatures 17 to T35 and integrated intensities I7 to I3.

For one single Maxwellian, the intensity in a small wavelength interval [\, A + dA] is
IiM (X, Ty)dX where M (X, T1) = 2a? exp(—a/A?) /A% is the normalized Maxwell distribu-
tion (o = 949.0 K A?/T 1). The initial weight of the created neutron ray, py, is calculated
according to Eq. , with W(\) replaced by 2?21 IiM(\T;).

The component Source_gen (see section works on the same principle, but pro-
vides more options concerning wavelength/energy range specifications, shape, etc.

Maxwellian parameters for some continuous sources are given in Table As nobody
knows exactly the characteristics of the sources (it is not easy to measure spectrum
there), these figures should be used with caution.

3.4. Source_gen: A general continuous source

Input Parameters for component Source_gen from sources

1|<Parameter = value>, [Unit], Description

This component is a continuous neutron source (rectangular or circular), which aims
at a rectangular target centered at the beam. The angular divergence is given by the
dimensions of the target. The shape may be rectangular (dimension A and w), or a disk
of radius r. The wavelength/energy range to emit is specified either using center and
half width, or using minimum and maximum boundaries, alternatively for energy and
wavelength. The flux spectrum is specified with the same Maxwellian parameters as in
component Source_Maxwell_3 (refer to section .

Maxwellian parameters for some continuous sources are given in Table As nobody
knows exactly the characteristics of the sources (it is not easy to measure spectrum
there), these figures should be used with caution.

27

Source Name T I T5 I T3 I3 factor
PSI cold source 150.4 3.67ell 38.74 3.64ell 14.84 0.95ell * Liarget (MA)
ILL VCS (H1) 216.8 1.24el13 33.9 1.02e13 16.7 3.042e12 58MW
ILL HCS (H5) 413.5 10.22e12 145.8 3.44el3 40.1 2.78el3 58MW

ILL Thermal(H2) | 683.7 5.874el2 257.7 2.51el3 16.7 1.034el2 58MW, /2.25
ILL Hot source 1695 1.74el3 708 3.9¢e12 58MW

PIK cold source | 204.6 5.38e12 73.9 7 2.50el12 23.9 9.51el2

HZB cold source 43.7 1.4e12 137.2 2.08el2 10MW, radius=.155
HZB bi-spectral 43.7 1.4e12 137.2 2.08el2 293 1.77el2 10MW

HZB thermal tube | 293.0 2.64el12 10MW

FRM2 cold 35.0 9.38¢12 547.5 2.23el2 195.4 1.26el3 20MW

FRM2 thermal 285.6 3.06el3 300.0 1.68e12 429.9 6.77el2 20MW

LLB cold,14MW 220 2.09e12 60 3.83el12 20 1.04e12 14MW
TRIGA thermal 300 3.5ell 1MW

Table 3.1.: Flux parameters for present sources used in components Source_gen and
Source_Maxwell_3. For some cases, a correction factor to the intensity should
be used to reach measured data; for the PSI cold source, this correction factor
is the beam current, Iiarget, which is currently of the order 1.2 mA.

3.5. Moderator: A time-of-flight source (pulsed)

Name: Moderator

Author: (System) Mark Hagen, SNS
Input parameters rs, Eo, Ev, 2z, w, h, 10, Ec, ¥
Optional parameters

Notes

Input Parameters for component Moderator from sources

1|<Parameter = value>, [Unit], Description I

The simple time-of-flight source component Moderator resembles the source compo-
nent Source_simple described in[3.1] Moderator is circular with radius rs and focuses
on a rectangular target of area w x h in a distance z;. The initial velocity is chosen with
a linear distribution within an interval, defined by the minimum and maximum energies,
Fy and E, respectively.

The initial time of the neutron is determined on basis of a simple heuristical model
for the time dependence of the neutron intensity from a time-of-flight source. For all
neutron energies, the flux decay is assumed to be exponential,

U(E,t) = exp(—t/T(F)), (3.3)

28

where the decay constant is given by

T0 B < E.

TE) = { o/l + (E— B2/ E> B, (3.4

The decay parameters are 7y (in ps), E., and v (both in meV).
Other pulsed source models are available from contributed components. See section

B.I11

3.6. ISIS_moderator: ISIS pulsed moderators

Input Parameters for component ISIS_moderator from sources

1|<Parameter = value>, [Unit], Description I

3.6.1. Introduction

The following document describes the functions obtained for models of TS2 as described
in Table [3.2}

target 3.4cm diameter tantalum clad tungsten
reflector Be + D20 (80:20) at 300K

Composite Moderator | Ho + CHy

Coupled Groove: 3x8.3 cm 26K solid-CHy

Hydrogen: 12x11cm 22K liquid Ho
Poisoned Moderator solid-CH4 26K

Decoupled Narrow: Gd poison at 2.4 cm - 8 vanes
Broad: 3.3 cm — not fully decoupled
PreModerators 0.85 cm and 0.75 cm HyO

Table 3.2.: Description of Models

TS1 model is from the tungsten target as currently installed and positioned. The
model also includes the MERLIN moderator, this makes no significant difference to the
other moderator faces.

3.6.2. Using the McStas Module

You MUST first set the environment variable ‘MCTABLES’ to be the full path of the
directory containing the table files:

1|BASH: export MCTABLES=/usr/local/lib/mcstas/contrib/ISIS_tables/
2|TCSH: setenv MCTABLES /usr/local/lib/mcstas/contrib/ISIS_tables/

29

In Windows this can be done using the ‘My Computer’ properties and selecting the
‘Advanced’ tab and the Environment variables button. This can of course be overridden
by placing the appropriate moderator (h.face) files in the working directory.

The module requires a set of variables listed in Table and described below.

The Face variable determines the moderator surface that will be viewed. There are
two types of Face variable: i) Views from the centre of each moderator face defined
by the name of the moderator, for TS1: Water, H2, CH4, Merlin and TS2: Hydrogen,
Groove, Narrow, Broad. ii) Views seen by each beamline, for TS1: Prisma, Maps, crisp
etc. and for TS2: E1-E9 (East) and W1-W9 (West).

The McStas distribution includes some example moderator files for T'S1 (water,h2,ch4)
and TS2 (broad, narrow, hydrogen, groove), but others are available at
http://www.isis.rl.ac.uk/Computing/Software/MC/, including instrument specific
models.

Variables F0 and E1 define an energy window for sampled neutrons. This can be used
to increase the statistical accuracy of chopper and mirrored instruments. However, E0
and F1 cannot be equal (although they can be close). By default these arguments select
energy in meV, if negative values are given, selection will be in terms of Angstroms.

Variables dist, zw and yh are the three component which will determine the directional
acceptance window. They define a rectangle with centre at (0,0,dist) from the moderator
position and with width zw meters and height yh meters. The initial direction of all the
neutrons are chosen (randomly) to originate from a point on the moderator surface and
along a vector, such that without obstruction (and gravitational effects), they would pass
through the rectangle. This should be used as a directional guide. All the neutrons start
from the surface of the moderator and will be diverted/absorbed if they encountered
other components. The guide system can be turned off by setting dist to zero.

The CAngle variable is used to rotate the viewed direction of the moderator and
reduces the effective solid angle of the moderator face. Currently it is only for the
horizontal plane. This is redundant since there are beamline specific h.face files.

The two variables modYsize and modXsize allow the moderators to be effectively
reduced/increased. If these variables are given negative or zero values then they default
to the actual visible surface size of the moderators.

The last variable SAC will correct for the different solid angle seen by two focussing
windows which are at different distances from the moderator surface. The normal mea-
surement of flux is in neutrons/second/A /cm? /str, but in a detector it is measured in
neutrons/second. Therefore if all other denominators in the flux are multiplied out then
the flux at a point-sized focus window should follow an inverse square law. This solid
angle correction is made if the SAC variable is set equal to 1, it will not be calculated
if SAC is set to zero. It is advisable to select this variable at all times as it will give the
most realistic results

3.6.3. Comparing TS1 and TS2

The Flux data provided in both sets of h.face files is for 60 uAmp sources. To compare
TS1 and TS2, the TS1 data must be multiplied by three (current average strength of

30

Variable Type | Options Units | Description
Face char* | i) Hydrogen Groove Nar- | — String which designates the
(TS2) row Broad, ii) name of the face
E1-E9 W1-W9
Face char* | i) H2 CH4 Merlin Wa- | - String which designates the
(TS1) ter, ii) Maps Crisp Gem name of the face
EVS HET HRPD Iris
Mari Polaris Prisma San-
dals Surf SXD Tosca
EO float 0<EO<E1l meV | Only neutrons above this en-
(A) ergy are sampled
E1l float EO<El<1el0 meV | Only neutrons below this en-
(A) ergy are sampled
dist float 0 < dist < o0 m Distance of focus window from
face of moderator
XW float 0<zw < o0 m x width of the focus window
vh float 0<yh<oo m y height of the focus window
CAngle float | -360 < C'Angle < 360 ° Horizontal angle from the nor-
mal to the moderator surface
modXsize | float 0 < modXsize < 0o m Horizontal size of the modera-
tor (defaults to actual size)
modYsize | float 0 < modY size < o0 m Vertical size of the moderator
(defaults to actual size)
SAC int 0,1 n/a | Solid Angle Correction

Table 3.3.: Brief Description of Variables

TS1 source 180 pAmps). When the 300 pAmp upgrade happens this factor should be
revised accordingly.

3.6.4. Bugs

Sometimes if a particularly long wavelength (> 20 A) is requested there may be problems
with sampling the data. In general the data used for long wavelengths should only be
taken as a guide and not used for accurate simulations. At 9 Athere is a kink in the
distribution which is also to do with the MCNPX model changing. If this energy is
sampled over then the results should be considered carefully.

31

3.7. Source_adapt: A neutron source with adaptive importance
sampling

Input Parameters for component Source_adapt from sources

1|<Parameter = value>, [Unit], Description

Source_adapt is a neutron source that uses adaptive importance sampling to im-
prove the efficiency of the simulations. It works by changing on-the-fly the probability
distributions from which the initial neutron state is sampled so that samples in regions
that contribute much to the accuracy of the overall result are preferred over samples
that contribute little. The method can achieve improvements of a factor of ten or some-
times several hundred in simulations where only a small part of the initial phase space
contains useful neutrons. This component uses the correlation between neutron energy,
initial direction and initial position.

The physical characteristics of the source are similar to those of Source_simple (see
section . The source is a thin rectangle in the x-y plane with a flat energy spectrum
in a user-specified range. The flux, ®, per area per steradian per Angstrom per second
is specified by the user.

The initial neutron weight is given by Eq. using A\ as the total wavelength range
of the source. A later version of this component will probably include a A-dependence
of the flux.

We use the input parameters dist, xw, and yh to set the focusing as for Source_simple
(section . The energy range will be from Ey—dFE to Eg+dE. filename is used to give
the name of a file in which to output the final sampling destribution, see below. Neyg,
Npos, and Ngi, are used to set the number of bins in each dimensions. Good general-
purpose values for the optimization parameters are o = 8 = 0.25. The number of bins
to choose will depend on the application. More bins will allow better adaption of the
sampling, but will require more neutron histories to be simulated before a good adaption
is obtained. The output of the sampling distribution is only meant for debugging, and
the units on the axis are not necessarily meaningful. Setting the filename to NULL disables
the output of the sampling distribution.

3.7.1. Optimization disclaimer

A warning is in place here regarding potentially wrong results using optimization tech-
niques. It is highly recommended in any case to benchmark ’optimized’ simulations
against non-optimized ones, checking that obtained results are the same, but hopefully
with a much improved statistics.

3.7.2. The adaption algorithm

The adaptive importance sampling works by subdividing the initial neutron phase space
into a number of equal-sized bins. The division is done on the three dimensions of energy,

32

horizontal position, and horizontal divergence, using Neng, Npos, and N gi, number of
bins in each dimension, respectively. The total number of bins is therefore

Nbin = NenngosNdiV (35)

Each bin ¢ is assigned a sampling weight w;; the probability of emitting a neutron within
bin ¢ is ws
P(i) = ——— (3.6)
N in
> j:bl wj

In order to avoid false learning, the sampling weight of a bin is kept larger than wpn,
defined as

3 Npin
Wpin = ——— E wj, 0<p<1 (3.7)
Nbin =1

This way a (small) fraction 3 of the neutrons are sampled uniformly from all bins, while
the fraction (1 —) are sampled in an adaptive way.

Compared to a uniform sampling of the phase space (where the probability of each
bin is 1/Npiy), the neutron weight must be adjusted as given by (?7?)

P N 2wy 58)
fvc P(i) Npinw; '
where Pj is understood by the "natural” uniform sampling.

In order to set the criteria for adaption, the Adapt_check component is used (see sec-
tion . The source attemps to sample only from bins from which neutrons are not ab-
sorbed prior to the position in the instrument at which Adapt_check is placed. Among
those bins, the algorithm attemps to minimize the variance of the neutron weights at the
Adapt_check position. Thus bins that would give high weights at the Adapt_check
position are sampled more often (lowering the weights), while those with low weights
are sampled less often.

Let ™ = pac/po denote the ratio between the neutron weight p; at the Adapt_check
position and the initial weight py just after the source. For each bin, the component
keeps track of the sum ¥ of 7’s as well as of the total number of neutrons n; from that
bin. The average weight at the Adapt_source position of bin i is thus 3;/n;.

We now distribute a total sampling weight of § uniformly among all the bins, and a
total weight of (1 —) among bins in proportion to their average weight ¥;/n; at the
Adapt_source position:

1

S —— T

Mo e 55 /n,

(3.9)

w;

After each neutron event originating from bin ¢, the sampling weight w; is updated.
This basic idea can be improved with a small modification. The problem is that until

the source has had the time to learn the right sampling weights, neutrons may be emitted

with high neutron weights (but low probability). These low probability neutrons may

33

account for a large fraction of the total intensity in detectors, causing large variances
in the result. To avoid this, the component emits early neutrons with a lower weight,
and later neutrons with a higher weight to compensate. This way the neutrons that are
emitted with the best adaption contribute the most to the result.

The factor with which the neutron weights are adjusted is given by a logistic curve

N Yo
F(j) = Cyo PR (3.10)

where j is the index of the particular neutron history, 1 < 7 < Nyit. The constants yo,
ro, and C are given by

2
= 3.11
Yo Nbin ()
1 1 1-— y0>
rg = — lo 3.12
0 a Nyjst 8 (Yo (8.12)
1_
C = 1+log <y0 + yOe—TONhist> (3.13)
Nhist

The number « is given by the user and specifies (as a fraction between zero and one)
the point at which the adaption is considered good. The initial fraction « of neutron
histories are emitted with low weight; the rest are emitted with high weight:

Nbin
. w;
0(]) o 1O)\Z]_l J

F(jy 3.14
sim Nbinwi (j) ()

The choice of the constants yg, 19, and C' ensure that
Nhist
/ F(j)=1 (3.15)
=0

so that the total intensity over the whole simulation will be correct
Similarly, the adjustment of sampling weights is modified so that the actual formula

used is 8 b/
. Yo s
w; = + (1 — - 3.16
W=7 1 ﬁ)yo + (1= yo)em70d S Mo (816)

3.7.3. The implementation

The heart of the algorithm is a discrete distribution p. The distribution has N bins,
1...N. Each bin has a value v;; the probability of bin 7 is then vl/(zyzl vj).

Two basic operations are possible on the distribution. An update adds a number a to
a bin, setting vV = vfld 4+ a. A search finds, for given input b, the minimum 4 such
that

b<)) (3.17)
j=1

34

The search operation is used to sample from the distribution p. If r is a uniformly
distributed random number on the interval [0; Z;Vﬂ vj] then i = search(r) is a random
number distributed according to p. This is seen from the inequality

i—1 i
Zvj <r§Zvj, (3.18)
j=1 j=1

from which r € [Z;;ll ViU + Z;;ll vj] which is an interval of length v;. Hence the
probability of i is v;/ (Zjvzl vj). The update operation is used to adapt the distribution
to the problem at hand during a simulation. Both the update and the add operation
can be performed very efficiently.

As an alternative, you may use the Source_Optimizer component (see section (3.9)).

3.8. Adapt_check: The adaptive importance sampling monitor

Input Parameters for component Adapt_check from sources

l|<Parameter = value>, [Unit], Description I

The component Adapt_check is used together with the Source_adapt component -
see section [3.7] for details. When placed somewhere in an instrument using Source_adapt
as a source, the source will optimize for neutrons that reach that point without being
absorbed (regardless of neutron position, divergence, wavelength, etc).

The Adapt_check component takes as single input parameter source_comp the name
of the Source_adapt component instance, for example:

1) ...
2 |COMPONENT mysource = Source_adapt (...)
3 ...

4|COMPONENT mycheck = Adapt_check(source_comp = mysource)

Only one instance of Adapt_check is allowed in an instrument.
We suggest, as alternative method, to make use of the SPLIT keyword, as described
in the McStas User Manual.

35

3.9. Source_Optimizer: A general Optimizer for McStas

Input Parameters for component Source_Optimizer from sources

1|<Parameter = value>, [Unit], Description

The component Source_Optimizer is not exactly a source, but rather a neutron
beam modifier. It should be positioned after the source, anywhere in the instrument
description. The component optimizes the whole neutron flux in order to achieve better
statistics at each Monitor_Optimizer location(s) (see section for this latter com-
ponent). It acts on any incoming neutron beam (from any source type), and more than
one optimization criteria location can be placed along the instrument.

The usage of the optimizer is very simple, and usually does not require any configura-
tion parameter. Anyway the user can still customize the optimization through various
options.

In contrast to Source_adapt, this optimizer does not record correlations between
neutron parameters. Nevertheless it is rather efficient, enabling the user to increase the
number of events at optimization criteria locations by typically a factor of 20. Hence, the
signal error bars will decrease by a factor 4.5, since the overall flux remains unchanged.

3.9.1. The optimization algorithm

When a neutron reaches the Monitor_Optimizer location(s), the component records its
previous position (z, y) and speed (v, vy, v.) when it passed in the Source_Optimizer.
Some distribution tables of good neutrons characteristics are then built.

When a bad neutron comes to the Source_Optimizer (it would then have few chances
to reach Monitor_Optimizer), it is changed into a better one. That means that its
position and velocity coordinates are translated to better values according to the good

neutrons distribution tables. The neutron energy (/v +vZ 4 v2) is kept (as far as

possible).
The Source_Optimizer works as follow:

1. First of all, the Source_Optimizer determines some limits (min and maz) for
variables x,y, vz, vy, V.

2. Then the component records the non-optimized flux distributions in arrays with
bins cells (default is 10 cells). This constitutes the Reference source.

3. The Monitor_Optimizer records the good neutrons (that reach it) and commu-
nicate an Optimized beam requirement to the Source_Optimizer. However,
retains ’ keep’ percent of the original Reference source is sent unmodified (default
is 10 %). The Optimized source is thus:

keep * Reference

Optimized =
+ (1 - keep) [Neutrons that will reach monitor].

36

—

O © 00U WN

4. The Source_Optimizer transforms the bad neutrons into good ones from the
Optimized source. The resulting optimised flux is normalised to the non-optimized

one:

Reference (3.19)

Poptimized = Pinitial Optimizeda
and thus the overall flux at Monitor_Optimizer location is the same as without
the optimizer. Usually, the process sends more good neutrons from the Optimized
source than that in the Reference one. The energy (and velocity) spectra of neutron
beam is also kept, as far as possible. For instance, an optimization of v, will induce

a modification of v, or vy to try to keep |v| constant.

5. When the continuous optimization option is activated (by default), the process
loops to Step ([3)) every ’step’ percent of the simulation. This parameter is computed
automatically (usually around 10 %) in auto mode, but can also be set by user.

During steps (1) and (2), some non-optimized neutrons with original weight pipitial
may lead to spikes on detector signals. This is greatly improved by lowering the weight
p during these steps, with the smooth option. The component optimizes the neutron pa-
rameters on the basis of independant variables (1D phase-space optimization). However,
it usually does work fine when these variables are correlated (which is often the case in
the course of the instrument simulation). The memory requirements of the component
are very low, as no big n-dimensional array is needed.

3.9.2. Using the Source_Optimizer

To use this component, just install the Source_Optimizer after a source (but any
location is possible afterwards in principle), and use the Monitor_Optimizer at a
location where you want to reach better statistics.

/* where to act on neutron beam x*/

COMPONENT' optim_s = Source_Optimizer (options="")
/* where to have better statistics x/
COMPONENT optim-m = Monitor_-Optimizer (

xmin = —0.05, xmax = 0.05,

ymin = —0.05, ymax = 0.05,

optim_comp = optim_s)

/* using more than one Monitor_Optimizer is possible x/

The input parameter for Source_Optimizer is a single options string that can
contain some specific optimizer configuration settings in clear language. The formatting
of the options parameter is free, as long as it contains some specific keywords, that can
be sometimes followed by values.

The default configuration (equivalent to options = 77) is

options = 7 continuous optimization, auto setting, keep = 0.1, bins = 0.1,
smooth spikes, SetXY+SetDivV+SetDivS”.

37

Parameters keep and step should be between 0 and 1. Additionally, you may restrict
the optimization to only some of the neutron parameters, using the SetXY, SetV, SetS,
SetDivV, SetDivS keywords. The keyword modifiers no or not revert the next option.
Other options not shown here are:

1| verbose displays optimization process (debug purpose).
2| inactivate to inactivate the Optimizer.
3| file =[name] Filename where to save optimized source distributions

The file option will save the source distributions at the end of the optimization. If no
name is given the component name will be used, and a ’.src’ extension will be added.
By default, no file is generated. The file format is in a McStas 2D record style.

As an alternative, you may use the Source_adapt component (see section which
performs a 3D phase-space optimization.

3.10. Monitor_Optimizer: Optimization locations for the
Source_Optimizer

Input Parameters for component Monitor_Optimizer from sources

1|<Parameter = value>, [Unit], Description I

The Monitor_Optimizer component works with the Source_Optimizer compo-
nent. See section [3.9] for usage.

The input parameters for Monitor_Optimizer are the rectangular shaped open-
ing coordinates Tmin, Tmaz, Ymin, Ymaz, and the name of the associated instance of
Source_Optimizer used in the instrument description file (one word, without quotes).

As many Monitor_Optimizer instances as required may be used in an instrument, for
possibly more than one optimization location. Multiple instances may all have an effect
on the total intensity.

38

3.11. Other sources components: contributed pulsed sources,
virtual sources (event files)

There are many other source definitions in McStas.
Detailed pulsed source components are available for new facilities in a number of
contributed components:

e SNS (contrib/SNS_source),
e ISIS (contrib/ISIS_moderator) see section [3.6
e ESS-project (ESS_moderator_long and ESS_moderator_short).

When no analytical model (e.g. a Maxwellian distribution) exits, one may have ac-
cess to measurements, estimated flux distributions, event files, and - better - to MCN-
P /Triploli4 neutron event records. The following components are then useful:

e misc/Virtual_input can read a McStas event file (in text or binary format), often
bringing an order-of-magnitude speed-up. See section [10.2]

e contrib/Virtual tripoli4_input does the same, but from event files (text for-
mat) obtained from the Tripolij [Iri] reactor simulation program. Such files are
usually huge.

e contrib/Virtual mcnp_input can read MCNP "PTRAC” event files (text for-
mat) obtained from the MCNP [Mcnb| reactor simulation program. Such files are
usually huge.

e misc/Vitess_input can read Vitess [Vit] neutron event binary files.

e optics/Filter_gen reads a 1D distribution from a file, and may either modify or
set the flux according to it. See section

39

4. Beam optical components: Arms, slits,
collimators, and filters

This chapter contains a number of optical components that is used to modify the neutron
beam in various ways, as well as the “generic” component Arm.

4.1. Arm: The generic component

Name: Arm
Author: System
Input parameters (none)
Optional parameters (none)
Notes

The component Arm is empty; is resembles an optical bench and has no effect on
the neutron ray. The purpose of this component is only to provide a standard means of
defining a local coordinate system within the instrument definition. Other components
may then be positioned relative to the Arm component using the McStas meta-language.
The use of Arm components in the instrument definitions is not required but is recom-
mended for clarity. Arm has no input parameters.

The first Arm instance in an instrument definition may be changed into a Progress_bar
component in order to display on the fly the simulation progress, and possibly save in-
termediate results.

4.2. Slit: A beam defining diaphragm

Input Parameters for component Slit from optics

1|<Parameter = value>, [Unit], Description I

The component Slit is a very simple construction. It sets up an opening at z = 0, and
propagates the neutrons onto this plane (by the kernel call PROP_Z0). Neutrons within
the slit opening are unaffected, while all other neutrons are discarded by the kernel call
ABSORB.

By using Slit, some neutrons contributing to the background in a real experiment will
be neglected. These are the ones that scatter off the inner side of the slit, penetrates
the slit material, or clear the outer edges of the slit.

40

The input parameters of Slit are the four coordinates, (Zmin, Zmax, Ymin, Ymax) defining
the opening of the rectangle, or the radius r of a circular opening, depending on which
parameters are specified.

The slit component can also be used to discard insignificant (i.e. very low weight) neu-
tron rays, that in some simulations may be very abundant and therefore time consuming.
If the optional parameter peyt is set, all neutron rays with p < peyt are ABSORB’ed.
This use is recommended in connection with Virtual_output.

4.3. Beamstop: A neutron absorbing area

Input Parameters for component Beamstop from optics

1|<Parameter = value>, [Unit], Description I

The component Beamstop can be seen as the reverse of the Slit component. It sets
up an area at the z = 0 plane, and propagates the neutrons onto this plane (by the kernel
call PROP_Z0). Neutrons within this area are ABSORB’ed, while all other neutrons are
unaffected.

By using this component, some neutrons contributing to the background in a real
experiment will be neglected. These are the ones that scatter off the side of the beam-
stop, or penetrates the absorbing material. Further, the holder of the beamstop is not
simulated.

Beamstop can be either circular or rectangular. The input parameters of Beamstop
are the four coordinates, (Zmin, Tmax; Ymin, Ymax) defining the opening of a rectangle, or
the radius r of a circle, depending on which parameters are specified.

If the ”direct beam” (e.g. after a monochromator or sample) should not be simulated,
it is possible to emulate an ideal beamstop so that only the scattered beam is left;
without the use of Beamstop: This method is useful for instance in the case where
only neutrons scattered from a sample are of interest. The example below removes the
direct beam and any background signal from other parts of the instrument

1 |COMPONENT MySample=V_sample (...) AT (...)

2 | EXTEND

3| %{

4 if (!SCATTERED) ABSORB;

5| %}

4.4. Filter_gen: A general filter using a transmission table

Input Parameters for component Filter from optics

1|<Parameter = value>, [Unit], Description I

This component is an ideal flat filter that changes the neutron flux according to a 1D
input table (text file).

41

File name Description

Be.trm Berylium filter for cold neutron spectrometers (e.g. k < 1.55
A1)

HOPG.trm Highly oriented pyrolithic graphite for A/2 filtering (e.g. ther-
mal beam at k = 1.64, 2.662, and 4.1 A~1)

Sapphire.trm | Sapphire (AlyO3) filter for fast neutrons (k > 6 A~1)

Table 4.1.: Some transmission data files to be used with e.g. the Filter_gen component

Filter_gen may act as a source (options="set”) or a filter (options="multiply”, de-
fault mode). The table itself is a 2 column free format file which accept comment lines.
The first table column represents wavevector, energy, or wavelength, as specified in the
options parameter, whereas the second column is the transmission/weight modifier.

A usage example as a source would use options="wavelength, set", if the first
column in the data is supposted to be A (in A). Another example using the component
as a filter would be options="energy, multiply" if the first column is £ (in meV).

The input parameters are the filter window size Tmin, Tmazs Ymin, Ymaz, the behaviour
specification string options and the file to use file. Additionally, rescaling can be made
automatic with the scaling and relative thickness parameters. If for instance the trans-
mission data file corresponds to a 5 cm thick filter, and one would like to simulate a 10
cm thick filter, then use thickness = 2.

Some example data files are given with McStas in the MCSTAS/data directory as *.trm
files for transmission.

The filter geometry is a flat plane. A geometry with finite thickness can be simulated
by surrounding this component with two slits.

42

4.5. Collimator_linear: The simple Soller blade collimator

Input Parameters for component Collimator_linear from optics

l|<Parameter = value>, [Unit], Description I

Collimator_linear models a standard linear Soller blade collimator. The collimator
has two identical rectangular openings, defined by the z and y values. Neutrons not
clearing both openings are ABSORB’ed. The length of the collimator blades is denoted
L, while the distance between blades is called d.

The collimating effect is taken care of by employing an approximately triangular trans-
mission through the collimator of width (FWHM) §, which is given in arc minutes, i.e.
0 = 60 is one degree. If § = 0, the collimating effect is disabled, so that the component
only consists of two rectangular apertures.

For a more detailed Soller collimator simulation, taking every blade into account, it
is possible to use Channeled_guide with absorbing walls, see section [5.3

delta

L ymax -q------ F==
/Z

ymin I F==
|

i i
- Xmin Xmax

Figure 4.1.: The geometry of a simple Soller blade collimators: The real Soller collimator,
seen from the top (left), and a sketch of the component Soller (right). The
symbols are defined in the text.

4.5.1. Collimator transmission

The horizontal divergence, 7, is defined as the angle between the neutron path and
the vertical y — z plane along the collimator axis. We then define the collimation angle
as the maximal allowed horizontal divergence: § = tan~!(d/L), see Fig. Neutrons

43

with a horizontal divergence angle || > ¢ will always hit at least one collimator blade
and will thus be ABSORB’ed. For smaller divergence angles, |n,| < d, the fate of the
neutron depends on its exact entry point. Assuming that a typical collimator has many
blades, the absolute position of each blade perpendicular to the collimator axis is thus
mostly unimportant. A simple statistical consideration now shows that the transmission
probability is 7' = 1 — tan |n,|/ tand. Often, the approximation 7'~ 1 — |n|/d is used,
giving a triangular transmission profile.

4.5.2. Algorithm

The algorithm of Collimator_linear is roughly as follows:

1. Check by propagation if the neutron ray clear the entry and exit slits, otherwise
ABSORB.

2. Check if |np| < 6, otherwise ABSORB.

3. Simulate the collimator transmission by a weight transformation:

m =T =1— tan |n,|/ tand, (4.1)

4.6. Collimator_radial: A radial Soller blade collimator

Name: Collimator_radial
Author: (System) E.Farhi, ILL
Input parameters w1, hi, ws, ha, len, Omin, Omaz, nchan, radius

Optional parameters divergence, nblades, roc and others
Notes Validated

This radial collimator works either using an analytical approximation like Collima-
tor_linear (see section [4.5)), or with an exact model.

The input parameters are the inner radius radius, the radial length len, the input and
output window dimensions wi, hy, ws, hg, the number of Soller channels nchan (each
of them being a single linear collimator) covering the angular interval [0,,in, Omaz] angle
with respect to the z-axis.

If the divergence parameter is defined, the approximation level is used as in Colli-
mator_linear (see section . On the other hand, if you perfer to describe exactly the
number of blades nblades assembled to build a single collimator channel, then the model
is exact, and traces the neutron trajectory inside each Soller. The computing efficiency
is then lowered by a factor 2.

The component can be made oscillating with an amplitude of roc times +w;, which
supresses the channels shadow.

As an alternative, you may use the Exact_radial_coll contributed component. For a
rectangular shaped collimator, instead of cylindrical /radial, you may use the Guide_channeled
and the Guide_gravity components.

44

Radial collimator

x/[m]

Figure 4.2.: A radial collimator

45

5. Reflecting optical components: mirrors,
and guides

This section describes advanced neutron optical components such as supermirrors and
guides as well as various rotating choppers. A description of the reflectivity of a super-
mirror is found in section [5.11

This section describes advanced neutron optical components such as supermirrors and
guides. A description of the reflectivity of a supermirror is found in section

5.1. Mirror: The single mirror

Name: Mirror

Author: System

Input parameters I, h, m

Optional parameters Ry, Q. W, «a,reflect

Notes validated, no gravitation support

The component Mirror models a single rectangular neutron mirror plate. It can be
used as a sample component or to e.g. assemble a complete neutron guide by putting
multiple mirror components at appropriate locations and orientations in the instrument
definition, much like a real guide is build from individual mirrors.

In the local coordinate system, the mirror lies in the first quadrant of the z-y plane,
with one corner at (0,0,0).

The input parameters of this component are the rectangular mirror dimensions (I, h)
and the values of Ry, m,Q., W, and « for the mirror reflectivity. As a special case, if
m = 0 then the reflectivity is zero for all @, i.e. the surface is completely absorbing.

This component may produce wrong results with gravitation.

5.1.1. Mirror reflectivity

To compute the reflectivity of the supermirrors, we use an empirical formula derived
from experimental data [Cla+98], see Fig. The reflectivity is given by

[Ry ifQ < Qe
= { LRo(1 — tanh((Q — mQo)/W)(1 - a(@ - Q) #Q>Q.

Here Q is the length of the scattering vector (in A=1) defined by

mn
Q= ki — k| = ?\Vi - vil, (5.2)

46

my being the neutron mass. The number m in is a parameter determined by the
mirror materials, the bilayer sequence, and the number of bilayers. As can be seen,
R = Ry for @ < Q., where Q. is the critical scattering wave vector for a single layer of
the mirror material. At higher values of (), the reflectivity starts falling linearly with a
slope a until a ”soft cut-off” at Q = m@Q.. The width of this cut-off is denoted W. See
the example reflection curve in figure [5.1

It is important to notice that when m < 1, the reflectivity remains constant at
R = Ry up to ¢ = Qc, and not m.Q).. This means that m < 1 parameters behave like
m = 1 materials.

Alternatively, the Mirror, Guide and Guide_gravity components may use a reflectivity
table reflect, which 1st column is q [A~!] and 2nd column as the reflectivity R in [0-1].
For this purpose, we provide m = 2 and m = 3 reflectivity files from SwissNeutronics
(supermirror_m2.rfl and supermirror_m3.rfl in MCSTAS/lib/data/).

5.1.2. Algorithm

The function of the component can be described as
1. Propagate the neutron ray to the plane of the mirror.

2. If the neutron trajectory intersects the mirror plate, it is reflected, otherwise it is
left untouched.

3. Reflection of the incident velocity vi = (vg,vy,v,) gives the final velocity v =

(Uam Uy, _Uz)‘
4. Calculate @ = 2myv,/h.
5. The neutron weight is adjusted with the amount m; = R(Q).

6. To avoid spending large amounts of computation time on very low-weight neutrons,
neutrons for which the reflectivity is lower than about 10719 are ABSORB’ed.

47

Supermirror reflectivity, m = 4
1.4 T T T

Reflectivity p
o
©

T
|

o
o
T
I

0.4 B

0.2 b

0 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Momentum transfer Q [A™"]

Figure 5.1.: A typical reflectivity curve for a supermirror, Eq. 1) The used values are
m=4,Ry=1,Q.=0.02A"1, a=649 A, W =1/300 A1,

5.2. Guide: The guide section

Input Parameters for component Guide from optics

1|<Parameter = value>, [Unit], Description I

The component Guide models a guide tube consisting of four flat mirrors. The guide
is centered on the z axis with rectangular entrance and exit openings parallel to the z-y
plane. The entrance has the dimensions (w1, h1) and placed at z = 0. The exit is of
dimensions (ws, he) and is placed at z = [where [is the guide length. See figure
The reflecting properties are given by the values of Ry, m,Q., W, and «, as for Mirror,
or alternatively from the reflectivity file reflect.

Guide may produce wrong results with gravitation support. Use Guide_gravity
(section [5.4)) in this case, or the Guide_channeled in section

5.2.1. Guide geometry and reflection

For computations on the guide geometry, we define the planes of the four guide sides by
giving their normal vectors (pointing into the guide) and a point lying in the plane:

n{ = (1,0, (wy —w1)/2) o} = (—w1/2,0,0)
ny = (=1,0,(wy —w1)/2) 05 = (w1/2,0,0)
n? = (0,1, (ha— h1)/2) oF = (0,—h1/2,0)
nf = (0,—l,(ha—h1)/2) OfF = (0,h1/2,0)

48

Figure 5.2.: The geometry used for the guide component.

In the following, we refer to an arbitrary guide side by its origin O and normal n.
With these definitions, the time of intersection of the neutron with a guide side can
be computed by considering the projection onto the normal:

(O —ro) - n3

19 =
B o
\% nB

, (5.3)

where o and (8 are indices for the different guide walls, assuming the values (h,v) and
(1,2), respectively. For a neutron that leaves the guide directly through the guide exit

we have l
bogit = — 20 (5.4)

(%

The reflected velocity v¢ of the neutron with incoming velocity v; is computed by the

formula
Vi

Vf:Vi—Qn‘Wn

(5.5)

This expression is arrived at by again considering the projection onto the mirror normal
(see figure [5.3)). The reflectivity of the mirror is taken into account as explained in
section Bl

5.2.2. Algorithm

1. The neutron is initially propagated to the z = 0 plane of the guide entrance.
2. If it misses the entrance, it is ABSORB’ed.

3. Otherwise, repeatedly compute the time of intersection with the four mirror sides
and the guide exit.

4. The smallest positive ¢ thus found gives the time of the next intersection with the
guide (or in the case of the guide exit, the time when the neutron leaves the guide).

5. Propagated the neutron ray to this point.

49

Figure 5.3.: Neutron reflecting from mirror. vi and v are the initial and final velocities,
respectively, and n is a vector normal to the mirror surface.

6. Compute the reflection from the side.

7. Update the neutron weight factor by the amount m; = R(Q).

8. Repeat this process until the neutron leaves the guide.

There are a few optimizations possible here to avoid redundant computations. Since
the neutron is always inside the guide during the computations, we always have (O —
ro)-n <0. Thust < 0if v-n > 0, so in this case there is no need to actually compute t.

Some redundant computations are also avoided by utilizing symmetry and the fact that
many components of n and O are zero.

50

5.3. Guide_channeled: A guide section component with
multiple channels

Name: Guide_channeled

Author: System

Input parameters w1, hy, we, ho, I, k, my, m,
Optional parameters d, Ry, Qcq, Qcy, W, oz, iy

Notes validated, no gravitation support

The component Guide_channeled is a more complex variation of Guide described
in the previous section. It allows the specification of different supermirror parameters for
the horizontal and vertical mirrors, and also implements guides with multiple channels
as used in neutron bender devices. By setting the m value of the supermirror coatings to
zero, nonreflecting walls are simulated; this may be used for a very detailed simulation
of a Soller collimator, see section

The input parameters are wy, hy, wa, ho, and [to set the guide dimensions as for
Guide (entry window, exit window, and length); k to set the number of channels; d to
set the thickness of the channel walls; and Ry, W, Qcz, Qcy, 0y 0y, My, and m, to set
the supermirror parameters as described under Guide (the names with z denote the
vertical mirrors, and those with y denote the horizontal ones).

5.3.1. Algorithm

The implementation is based on that of Guide.
1. Calculate the channel which the neutron will enter.

2. Shift the z coordinate so that the channel can be simulated as a single instance of
the Guide component.

3. (do the same as in Guide.)

4. Restore the coordinates when the neutron exits the guide or is absorbed.

5.3.2. Known problems

e This component may produce wrong results with gravitation support. Use Guide_gravity
(section [5.4) in this case.

e The focusing channeled geometry (for £ > 1 and different values of w; and wy)
is buggy (wall slopes are not computed correctly, and the component ’leaks’ neu-
trons).

o1

5.4. Guide _gravity: A guide with multiple channels and
gravitation handling

Name: Guide_gravity

Author: System

Input parameters wi, hi, wa, ha, I, k, m

Optional parameters d, Ry, Q., W, «, wavy, chamfers, ky,, n, G

Notes validated, with gravitation support, rotating mode

This component is a variation of Guide_channeled (section with the ability to
handle gravitation effects and functional channeled focusing geometry. Channels can be
specified in two dimensions, producing a 2D array (k,kp) of smaller rectangular guide
channels.

The coating is specified as for the Guide and Mirror components by mean of the
parameters Rg, m,Q., W, and «, or alternatively from the reflectivity file re flect.

Waviness effects, supposed to be randomly distributed (i.e. non-periodic waviness)
can be specified globally, or for each part of the guide section. Additionally, chamfers
may be defined the same way. Chamfers originate from the substrate manufacturing, so
that operators do not harm themselves with cutting edges. Usual dimensions are about
tens of millimeters. They are treated as absorbing edges around guide plates, both on
the input and output surfaces, but also aside each mirror.

The straight section of length [may be divided into n bits of same length within which
chamfers are taken into account.

The component has also the capability to rotate at a given frequenccy in order to
approximate a Fermi Chopper, including phase shift. The approximation resides in the
fact that the component is considered fixed during neutron propagation inside slits.
Beware that this component is then located at its entry window (not centered as the
other Fermi choppers).

To activate gravitation support, either select the McStas gravitation support (mcrun --gravitatio
or from the Run dialog of mcgui), or set the gravitation field strength G (e.g. -9.81 on
Earth).

This component is about 50 % slower than the Guide component, but has much more
capabilities.

A contributed version Guide_honeycomb of this component exists with a honeycomb
geometry.

5.5. Bender: a bender model (non polarizing)

Name: Bender

Author: Philipp Bernhardt

Input parameters 7, Win, l,w, h

Optional parameters k,d, Roja.is)) Qai,s]s Mai,s)> @efasi,s) Wiasis]
Notes partly validated, no gravitation support

52

—

O © 00U WN

The Bender component is simulating an ideal curved neutron guide (bender). It is
bent to the negative X-axis and behaves like a parallel guide in the Y axis. Opposite
curvature may be achieved by a (0,0, 180) rotation (along Z-axis).

Bender radius r, entrance width w and height h are required parameters. To define
the length, you may either enter the deviation angle W, or the length . Three different
reflectivity profiles Ry, Q., W, m, a can be given (see section : for outer walls (index
a), for inner walls (index i) and for the top and bottom walls (index s).

To get a better transmission coeflicient, it is possible to split the bender into k£ channels
which are separated by partitions with the thickness of d. The partitioning walls have
the same coating as the exterior walls.

Because the angle of reflection doesn’t change, the routine calculates the reflection
coefficent for the concave and, if necessary, for the convex wall only onces, together with
the number of reflections. Nevertheless the exact position, the time, and the divergence
is calculated at the end of the bender, so there aren’t any approximations.

The component is shown straight on geometrical views (mcdisplay/Trace), and the
next component may be placed directly at distance r.W;, = [without rotation.

Results have been compared succesfully with analytical formula in the case of an ideal
reflection and cross-checked with the program haupt.

An other implementation of the Bender is available as the contributed component
Guide_curved.

5.6. Curved guides

Real curved guides are usually made of many straight elements (about 1 m long) sep-
arated with small gaps (e.g. 1 mm). Sections of about 10 m long are separated with
bigger gaps for accessibility and pumping purposes.

We give here an example description of such a section. Let us have a curved guide of
total length L, made of n elements with a curvature radius R. Gaps of size d separate
elements from each other. The rotation angle of individual straight guide elements is
ay = (L+d)/R*180/7 in degrees.

In order to build an independent curved guide section, we define Arm components at
the begining and end of it.

COMPONENT CG_In = Am() AT (...)

COOMPONENT CG.1 = Guide_gravity (1=L/n, ...)

AT (0,0,0) RELATIVE PREVIOUS

COMPONENT CG.2 = Guide_gravity (1=L/n, ...)

AT (0,0,L/n+d) RELATIVE PREVIOUS

ROTATED (0, (L/n+d)/R«180/PI, 0) RELATIVE PREVIOUS
COMPONENT CG_Out = Arm() AT (0,0,L/n) RELATIVE PREVIOUS

The Guide component should be duplicated n times by copy-paste, but changing the
instance name, e.g. CG_1, CG_2, ..., CGn. This may be automated with the COPY or

53

the JUMP ITERATE mechanisms (see User manual).
An implementation of a continuous curved guide has been contributed as component
Guide_curved.

o4

6. Moving optical components: Choppers
and velocity selectors

We list in this chapter some moving optical components, like choppers, that may be used
for TOF class instrument simulations, and velocity selector used for partially monochro-
matize continuous beams.

6.1. DiskChopper: The disc chopper

Input Parameters for component DiskChopper from optics

l|<Parameter = value>, [Unit], Description

To cut a continuous neutron beam into short pulses, or to control the pulse shape (in
time) from a pulsed source, one can use a disc chopper (see figure . This is a fast
rotating disc with the rotating axis parallel to the neutron beam. The disk consists of
neutron absorbing materials. To form the pulses the disk has openings through which
the neutrons can pass.

Component DiskChopper is an infinately thin, absorbing disc of radius R with n
slit openings of height A and angular width 6y. The slits are symmetrically disposed on
the disc. If unset, the slit height A will extend to the centre of the disc (h = R).

The DiskChopper is self-centering, meaning that the centre of the slit openings will
automatically be positioned at the centre of the beam axis (see figure . To override
this behaviour, set the paramter compat = 1, positioning the chopper centre at height
—R - as implemented in the original Chopper component.

Optionally, each slit can have a central, absorbing insert - a beamstop of angular
width 6. For more exotic chopper definitions, use the GROUP keyword, see below for an
example.

The direction of rotation can be controlled, which allows to simulate e.g. counter-
rotating choppers. The phase or time-delay tg (in seconds) is defined by the time where
the first of the n slits is positioned at the top. As an alternative, an angular phase can
be given using the ¢y parameter.

By default, neutrons hitting outside the physical extent of the disc are absorbed. This
behaviour can be overruled by setting parameter abs_out = 0.

When simulating the chopping of a continuous beam, most of the neutrons could
easily be lost. To improve efficiency, one can set the flag IsFirst, which will allow every
neutron ray to pass the DiskChopper, but modify the time, ¢, to a (random) time
at which it is possible to pass. Of course, there should be only one “first chopper” in

95

0~ O ULk W N

Figure 6.1.: Sketch of a disc chopper with geometry parameters

any simulation. To simulate frame overlap from a “first chopper”, one can specify the
number of frames to study by the parameter npyise.

For more advanced chopper geometries than those mentioned above, it is possible to
set up a GROUP of choppers:

COMPONENT Chopl = DiskChopper (omega=2500, R=0.3, h=0.2, theta_0=20, n=1)
AT (0, 0, 1.1) RELATIVE Source
GROUP Choppers

COMPONENT Chop2 = DiskChopper (omega=2500, R=0.3, h=0.2, theta_0=20, n=1,
phi_0=40)

AT (0, 0, 1.1) RELATIVE Source

GROUP Choppers

The result of such a DiskChopper GROUPing can be seen in figure

56

DkkChopper GROUP rangament
PSD1 [PSD1.sim]
0 X0=—-6.90216; dX=7.63337; YO=—0.91963; dY-

Y position [em]

Figure 6.2.: mcdisplay rendering and monitor output from a DiskChopper GROUP

6.2. FermiChopper: The Fermi-chopper

Input Parameters for component FermiChopper from optics

1|<Parameter = value>, [Unit], Description

6.2.1. The chopper geometry and parameters

The Fermi chopper is a rotating vertical cylinder containing a set of collimating slits (slit
package). Main geometry parameters are the radius R, minimum and maximum height
Ymin and Ymaz (see Fig. . In this implementation, the slits are by default straight,
but may be coated with super-mirror, and curved. Main parameters for the slits are
the number of slits Nslit, the length length and width w of each slit, the width of the
separating Cd-blades is neglected. The slit walls reflectivity is modelled just like in guide
components by the m-value (m > 1 for super mirrors), the critical scattering vector Q.,
the slope of reflectivity «, the low-angle reflectivity Ry and the width of supermirror
cut-off W. For m = 0 the blades are completly absorbing. The AT position of the
component is its center.

The angular speed of the chopper is w = 27v, where v is the rotation frequency.
The angle phase for which the chopper is in the ’open’ state for most of the neutrons
coming in (z’ axis of the rotating frame parallel to the z axis of the static frame) is
also an input parameter. The time window may optionally be shifted to zero when

o7

Al-Cd-slit package

=X’

length

Z(m)
o

-0.02 |

Absorbing

Chopper wall
-0.04 : :
-0.04 -0.02 0 0.02 0.04
\ X(m)

Figure 6.3.: Geometry of the Fermi-chopper (left) and Neutrons in the chopper (right).

setting the zero_time=1 option. A phase guess value may be set automatically using
the zero_time=2 option.

The curvature of the slit channels is specified with the curvature parameter. Positive
sign indicates that the deviation 'bump’ due to curvature is in the 2’ positive side, and
the center of curvature is in the 2’ negative side. The optimal radius of curvature R is
related to frequency v and neutron velocity v with: v = 47w Rv.

The component was validated extensively by K. Lieutenant. As an alternative, one
may use the Vitess_ChopperFermi component (eventhough slower and without super-
mirror support) or the FermiChopper_ILL contributed component. The Guide_gravity
component has also a rotating mode, using an approximation of a Fermi Chopper.

6.2.2. Propagation in the Fermi-chopper

As can be seen in figure [6.3] neutrons first propagate onto the cylinder surface of the
chopper (yellow curve). Then the program checks the interaction with the entrance
of the slit package (orange line) and calculates which slit is hit. If the slit coating is
reflecting (m > 0), multiple reflections are calculated (green, blue and maroon circles),
otherwise the neutrons are absorbed as soon as they interact with the blades. Finally
the remaining neutrons propagate to the exit of the chopper (red curve).

The rotation of the chopper is characterized by the angle § between the rotating z’
and the static z-axis. d(¢) is defined by:

5(t) = 2,2 = w.(t — tg) = w.t + ¢o

where t is the absolute time, tg is the chopper delay, and ¢ is the chopper phase. The
chopper should better be time focussing: slow neutrons should pass before the fast ones,

o8

Parameter unit | meaning

radius [m] | chopper cylinder radius

ymin [m] | lower y bound of cylinder

ymax [m] | upper y bound of cylinder

Nslit [1] | number of chopper slits

length [m] | channel length of the Fermi chopper

w [m] | width of one chopper slit. May also be specified as
width=w*Nslit for total width of slit package.

nu [Hz] | chopper frequency

phase [deg] | chopper phase at t=0

zero_time [1] | shit time window around 0 if true

curvature [m~!] | Curvature of slits (1/radius of curvature)

m [1]

alpha [A]

Qc [A=1] | slit coating parameters. See section

W [A=1]

RO 1]

Table 6.1.: FermiChopper component parameters

so that they finally hit the detectors at the same time. Therefore the signs of w and §
are very important: For ¢ > tg, § is positive and points anti-clockwise.

Since the rotation is applied along the y - axis, we can simplify the problem to two
dimensions. The orthogonal transformation matrix 7" from the static (zzx) to the rotating

frame (2'2') is:
[cos(6) sin(6)
Teamzrar = < —sin(d) cos(d) > (6.1)

Together with the equation for a non-accelerated, linear propagation ¥ = 7 + ¥t the
orthogonal transformation produces a curve in the Z’-X’-plane known as archidemic
spiral, as can be seen in figure The two vector components s(t) = (2/,2’) follow the

equation:
su):(%):r(z(t)):(o= (KonB(0) (3045 i) >(6.2)

(t
—(z0 + vy.t)sin(d(t)) + (xo + vy.t)cos(d(
For a fixed chopper rotation speed, the neutron trajectory tends to strech from a spiral
curve for slow neutrons to a straight line for fast neutrons. For real Fermi chopper
settings v (about 100 Hz on IN6 at the ILL), neutron trajectories are found to be nearly
straight for 1000 m/s neutron velocities [Bla83].
The basis of the algorithm is to find the intersections of these spiral trajectories with

the chopper outer cylinder and then the slit package, in the rotating frame.
For this purpose, the Ridders’s root finding method was implemented [Pre+02] in

99

——- Z'-Component
—— X'-Component A

Z(m)

Time t X (m)

Figure 6.4.: The x’ and z’ component as a function of time in the rotating frame (left).
A typical neutron trajectory in the rotating frame (right).

order to solve
2(t)=dor Z(t)=d (6.3)

This method provides faster and more accurate intersection determination than other
common algorithms. E.g. the secant method fails more often and may give wrong results
(outside chopper) whereas the bisection method (a.k.a Picard dichotomy) is slightly
slower.

Standard slit packages (non super-mirror)

The neutrons are first propagated to the outer chopper cylinder and their coordinates
are transformed into the rotating frame using 7. Neutrons outside the slit channel
(chopper opening), or hitting the top and bottom caps are absorbed (yellow dots in Fig.
6.3). The side from which the neutron approaches the chopper is known (positive or
negative z’-axis of the rotating frame) so that the calculation of the time of interaction
with the slit package entrance t; is performed solving 2’ = i% in Eq. . Using
the result of the numerical algorithms the neutron propagates to the entrance of the slit
package (orange circles in Fig. . Neutrons getting aside the slit package entrance
are absorbed. Additionally, the slit package exit time ¢y is estimated the same way with
2 = $len2gth, in order to evaluate the whole time-of-flight in the chopper. The index of
the slit which was hit is also computed, as we know the ' coordinate in the rotating
frame at the slit entrance.

Differentiating Eq. (6.2]) for x coordinate

2! (t) = vl (t) = [vy — w.(z + v..t)] cos(w(t — tg)) — [z + w.(z + vg.t)] sin(w(t —tg)) (6.4)

60

M) |

Figure 6.5.: The different steps in the algorithm (left). A neutron trajectory in a slit
(right)

we may estimate the tangents to the spiral neutron trajectory in the rotating frame at
times t; and t2. The intersection of these two lines gives an intermediate time t3.

If the neutron remains in the same slit at this point, then there is no intersection with
the slit walls (direct flight), and the neutron may be propagated to the slit output, and
then to the cylinder output. A last check is made for the neutron to pass the chopper
aperture in the cylinder.

If the neutron changes of slit channel at this point, we may determine the intersection
time of the neutron trajectory within [t1,t3] or [t3, 2], as seen in Fig. If walls are
not reflecting, we just absorb neutrons here.

The reflections (super-mirror slits)

If slit walls are reflecting, neutron is first propagated to the slit separating surface. Then
the velocity in the rotating frame is computed using Eq. . Perpendicular velocity v/,
is reverted for reflection, and inverse 7" transformation is performed. Reflected intensity
is computed the same way as for the guide component (see section . The remaining
time to to the slit output is estimated and the tangent intersection process is iterated,
until neutron exits. Remember that super mirror m < 1 parameters behave like m =1
materials (see section . Selecting m = 0 sets the blabes absorbing.

The propagation is finalized when determining the intersection of the neutron trajec-
tory with the outer surface of the chopper cylinder. The neutron must then pass its
aperture, else it is absorbed.

WARNING: Issues have been reported for the supermirror slit option in this compo-
nent. The component works correctly when using the standard, absorbing slits. We will
be back with more information during the course of 2017. Meanwhile we suggest to in-
stead use Guide_channeled with the rotate/derotate option shown in the test instrument
Test_Fermi.instr.

61

Curved slit packages

The effect of curvature can significantly improve the flux and energy resolution shape.

As all (zx) cordinates are transformed into (2'z’), the most efficient way to take into
account the curvature is to include it in the transformation Eq. by 'morphing’ the
curved rotating real space to a straight still frame. We use parabolic curvature for slits.
Then instead of solving

2/ (t) =d — Ay (') where Ay (2') = Ryir-(1 — /1 — (2//Rgiit)?) (6.5)

with A being the gap between the straight tangent line at the slit center and the real
slit shape, we perform the additional transformation

=2+ Ay () (6.6)

The additional transformation counter-balances the real curvature so that the rest of
the algorithm is written as if slits were straight. This applies to all computations in the
rotating frame, and thus as well to reflections on super mirror coatings.

6.3. Vitess_ChopperFermi: The Fermi Chopper from Vitess

Input Parameters for component Vitess_ChopperFermi from optics

1|<Parameter = value>, [Unit], Description

The component Vitess_ChopperFermi simulates a Fermi chopper with absorbing
walls. The shape of the channels can be straight, curved with circular, or curved with
ideal (i.e. close to a parabolic) shape. This is determined by the parameter ’GeomOp-
tion’. In the option ’straight Fermi chopper’, the very fast neutrons are transmitted
with only a time modulation and lower speed neutrons are modulated both in time of
flight and wavelength. If the channels are curved, the highest transmission occurs for a
wavelength

3956[mA /s|
Aopt = e (6.7)
with
w=2nf (6.8)

The optimal shape is calculated in an exact way and is close to parabolic; in this case,
transmission is as high for the optimal wavelength as in the case of a straight Fermi
chopper for the limit A — 0. In the more realistic case of circular shapes channels, the
transmission is slightly lower. In general, neutrons are transmitted through a curved
Fermi chopper with a time AND wavelength modulation .

62

The rotation axis is vertical (y-axis), i.e. the path length through the channels is given
by the length [along the z-axis. The inital orientation is given by the phase ¢ of the
chopper - ¢ = 0 means transmission orientation.

Geometry for straight and circular channels: The geometry of the chopper consists
of a rectangular shaped object with a channel system. In transmission position, there are
Niates slits of width wg;; each along the x-axis, separated by absorbing walls of thickness
Wyan (see figure [6.6). The total width wyet is given by

Wrot, = Ngateswslit + (Ngates + 1)wwall (69)

The rectangular channel system is surrounded by a so-called shadowing cylinder; it is
a part of a cylinder with vertical symmetry axis and diameter

d > /12 4+ wi, (6.10)

It serves to prevent transmission of neutrons which do not fly through the channels;
but it also reduces the transmission, because the cylinder removes neutrons in front of
the channel entrance or behind the channel exit (see figure [6.6).

SN

AV4
AN .

\ 4

— rotation axis

N

Figure 6.6.: geometry of a staight Fermi chopper

Geometry for parabolic channels: In this case, the Fermi chopper is supposed to be
a full cylinder, i.e. the central channels are longer than those on the edges. The other
features are the same as for the other options. (see figure .

The algorithm works with a rotating chopper framework. Neutrons hitting the channel
walls are absorbed. The channels are approximated by Ngates gates. If the trajectory
takes a course through all the gates, the neutron passes the Fermi chopper. There are
gates at the entrance and the exit of the channel. The other gates are situated close to
the centre of the Fermic chopper. Precision of the simulation increases with the number
of gates, but also the computing time needed. The use of four channels already gives
exact transmission shapes for lower wavelengths (A < 6 A) and good approximation for
higher ones. It is recommended to use larger number of channels only for a check.

63

Figure 6.7.: geometry of a curved Fermi chopper

The option ’zerotime’ may be used to reset the time at the chopper position. The time
is set to a value between -1},/2 and +7},/2 (with T}, being the maximal pulse length),
depending on the phase of the chopper at the moment of passing the chopper centre.
The result is the generation of only 1 pulse instead of several; this is useful for TOF
instruments on continuous sources.

This component is about twice slower than the FermiChopper component.

The component must be placed after a component which sets a non zero flight path
to the Fermi Chopper (e.g. not an Arm).

64

velocity selector

0.1

0

E 0.1

=
-0.2
0
0.5
1
z/[m] 01 O 0.1

Figure 6.8.: A velocity selector

6.4. V_selector: A rotating velocity selector

Input Parameters for component V_selector from optics

1|<Parameter = value>, [Unit], Description I

The component V _selector models a rotating velocity selector constructed from N
collimator blades arranged radially on an axis. Two identical slits (height x width) at a
12 o’clock position allow neutron passage at the position of the blades. The blades are
"twisted” on the axis so that a stationary velocity selector does not transmit neutrons;
the total twist angle is denoted ¢ (in degrees).

Further input parameters for V_selector the distance between apertures, Lg, the
length of the collimator blades, L1, the height from rotation axix to the slit centre, rg,
the rotation speed w (in rpm), and the blade thickness .

The local coordinate system has its Origo at the slit centre.

The component Selector produces equivalent results.

65

6.4.1. Velocity selector transmission

By rotating the selector you allow transmittance of neutrons rays with velocities around
a nominal value, given by

Vo =wL/¢, (6.11)

which means that the selector has turned the twist angle ¢ during the typical neutron
flight time L/Vjh. The actual twist angle is ¢/ = wt = wL/V.

Neutrons having a velocity slightly different from Vj will either be transmitted or
absorbed depending on the exact position of the rotator blades when the neutron enters
the selector. Assuming this position to be unknown and integrating over all possible
positions (assuming zero thickness of blades), we arrive at a transmission factor

T { 1— (N/2m)|¢p —wL/V| if (N/27)|¢ —wL/V| <1

0 otherwise (6.12)

where N is the number of collimator blades.

A horisontal divergence changes the above formula because of the angular difference
between the entry and exit points of the neutron. The resulting transmittance resembles
the one above, only with V replaced by V, and ¢ replaced by (¢ + 1), where 1 is
the angular difference due to the divergence. An additional vertical divergence does
not change this formula, but it may contribute to 1. (We have here ignored the very
small non-linearity of ¢ along the neutron path in case of both vertical and horisontal
divergence).

Adding the effect of a finite blade thickness, t, reduces the transmission by the overall

factor N
t

1— 6.13

(27rr) ’ ()

where 7 is the distance from the rotation axis. We ignore the variation of r along the
neutron path and use just the average value.

6.5. Selector: another approach to describe a rotating velocity
selector

Input Parameters for component Selector from optics

l|<Parameter = value>, [Unit], Description

The component Selector describes the same kind of rotating velocity selector as
V _selector - compare description there - but it uses different parameters and a different
algorithm:

The position of the apertures relative to the z-axis (usually the beam centre) is defined
by the four parameters xmin, xmaz,ymin,ymaz. Entry and exit apertures are always
identical and situated directly before and behind the rotor. There are num blades of
thickness width twisted by the angle « (in degrees) on a length len. The selector rotates

66

with a speed feq (in rotation per second); its axle is in a distance radius below the
Z-axis.

First the neutron is propagated to the entrance window. The loss of neutrons hitting
the thin side of the blades is taken into account by multiplying the neutron weight by a
factor

p(r) = 0i(r)/0, (6.14)

0, = 360° /num (6.15)

0; is the opening between two blades for the distance r between the neutron position
(at the entrance) and the selector axle. The difference between 6, and 6; is determined
by the blade thickness. The neutron is now propagated to the exit window. If it is
outside the regarded channel (between the two actual blades), it is lost; otherwise it
remains in the exit plane.

WARNING - Differences between Selector and V _selector:

e Selector has a different coordinate system than V_selector; in Selector the
origin lies in the entrance plane of the selector.

e The blades are twisted to the other side, i.e. to the left above the axle in Selector.

e Speed of rotation is given in rotation per second, not in rotations per minute as in
V _selector.

67

7. Monochromators

In this class of components, we are concerned with elastic Bragg scattering from monochro-
mators. Monochromator_flat models a flat thin mosaic crystal with a single scattering
vector perpendicular to the surface. The component Monochromator_curved is phys-
ically similar, but models a singly or doubly bend monochromator crystal arrangement.

A much more general model of scattering from a single crystal is found in the compo-
nent Single_crystal, which is presented under Samples, chapter

7.1. Monochromator_flat: An infinitely thin, flat mosaic crystal
with a single scattering vector

Input Parameters for component Monochromator_flat from optics

1|<Parameter = value>, [Unit], Description

This component simulates an infinitely thin single crystal with a single scattering
vector, Qo = 27/d,,, perpendicular to the surface. A typical use for this component is
to simulate a simple monochromator or analyzer.

The monochromator dimensions are given by the length, zy, and the height, y,. As
the parameter names indicate, the monochromator is placed in the z—y plane of the local
coordinate system. This definition is made to ensure that the physical monochromator
angle (often denoted A1) will equal the McStas rotation angle of the Monochromator
component around the y-axis. Ry is the maximal reflectivity and 7y, and n, are the
horizontal and vertical mosaicities, respectively, see explanation below.

7.1.1. Monochromator physics and algorithm

The physical model used in Monochromator_flat is a rectangular piece of material
composed of a large number of small micro-crystals. The orientation of the micro-
crystals deviates from the nominal crystal orientation so that the probability of a given
micro-crystal orientation is proportional to a Gaussian in the angle between the given
and the nominal orientation. The width of the Gaussian is given by the mosaic spread,
7, of the crystal (given in units of arc minutes). 7 is assumed to be large compared
to the inherent Bragg width of the scattering vector (often a few arc seconds). (The
mosaicity gives rise to a Gaussian reflectivity profile of width similar to - but not equal
- the intrinsic mosaicity. In this component, and in real life, the mosaicity given is that
of the reflectivity signal.)

68

A 4Q0
A 3Q0
2Q0

Q0

Figure 7.1.: Selection of the Bragg order (“2” in this case).

As a further simplification, the crystal is assumed to be infinitely thin. This means
that multiple scattering effects are not simulated. It also means that the total reflectivity,
1o is used as a parameter for the model rather than the atomic scattering cross section,
implying that the scattering efficiency does not vary with neutron wavelength. The
variance of the lattice spacing (Ad/d) is assumed to be zero, so this component is not
suitable for simulating backscattering instruments (use the component Single_crystal in
section [8.4] for that).

When a neutron trajectory intersects the crystal, the first step in the computation is to
determine the probability of scattering. This probability is then used in a Monte Carlo
choice deciding whether to scatter or transmit the neutron. The physical scattering
probability is the sum of the probabilities of first- second-, and higher-order scattering -
up to the highest order possible for the given neutron wavelength. However, in most cases
at most one order will have a significant scattering probability, and the computation thus
considers only the order that best matches the neutron wavelength.

The scattering of neutrons from a crystal is governed by Bragg’s law:

nQg = 2k; sin 6 (7.1)

The scattering order is specified by the integer n. We seek only one value of n, namely
the one which makes nQ closest to the projection of 2k; onto Q (see figure .

Once n has been determined, the Bragg angle 6 can be computed. The angle « is the
amount one would need to turn the nominal scattering vector Q for the monochroma-
tor to be in Bragg scattering condition. We now use « to compute the probability of
reflection from the mosaic crystal

DPreflect = Roe_a2/2n2, (72)

The probability prefiect is used in a Monte Carlo choice to decide whether the neutron is
transmitted or reflected.

69

2ksin2t

Figure 7.2.: Scattering into the part of the Debye-Scherrer cone covered by the mosaic.

In the case of reflection, the neutron will be scattered into the Debye-Scherrer cone,
with the probability of each point on the cone being determined by the mosaic. The
Debye-Scherrer cone can be described by the equation

k¢ = ki cos 20 + sin 26(c cos ¢ + bsin p), @ € [—m; 7, (7.3)

where b is a vector perpendicular to k; and Q, ¢ is perpendicular to k; and b, and both
b and c have the same length as k; (see figure . When choosing ¢ (and thereby ky),
only a small part of the full [—7;] range will have appreciable scattering probability in
non-backscattering configurations. The best statistics is thus obtained by sampling ¢
only from a suitably narrow range.

The (small) deviation angle « of the nominal scattering vector nQ corresponds to a
Agq of

Aq ~ a2ksin 6. (7.4)
The angle ¢ corresponds to a Aks (and hence Agq) of
Aq ~ ¢k sin(20) (7.5)

(see figure|7.2)). Hence we may sample ¢ from a Gaussian with standard deviation

a2ksin0 . 2ksinf «
ksin(20) 2ksinfcosf cosf

(7.6)

to get good statistics.
What remains is to determine the neutron weight. The distribution from which the

scattering event is sampled is a Gaussian in ¢ of width 3,

1 2 2
_ —p?/2(c/ cos0) 7.7
fuc(e) V27 (o / cos 9)6 @7)

70

In the physical model, the probability of the scattering event is proportional to a Gaus-
sian in the angle between the nominal scattering vector Q, and the actual scattering
vector q. The normalization condition is that the integral over all ¢ should be 1. Thus
the probability of the scattering event in the physical model is

—d(p)? [T —d(e)?
H(SO)ZG 2;; // e 2;; dy (78)

—Tr

where d(¢) denotes the angle between the nominal scattering vector and the actual
scattering vector corresponding to ¢. According to equation (?7), the weight adjustment
m; is then given by

7 =11()/ fmc(e). (7.9)

In the implementation, the integral in (7.8]) is computed using a 15-order Gaussian
quadrature formula, with the integral restricted to an interval of width 50/ cos 8 for the
same reasons discussed above on the sampling of ¢.

7.2. Monochromator_curved: A curved mosaic crystal with a
single scattering vector

Input Parameters for component Monochromator_curved from optics

1|<Parameter = value>, [Unit], Description

This component simulates an array of infinitely thin single crystals with a single
scattering vector perpendicular to the surface and a mosaic spread. This component
is used to simulate a singly or doubly curved monochromator or analyzer in reflecting
geometry.

The component uses rectangular pieces of monochromator material as described in
Monochromator_curved. The scattering vector is named @, and as described in
Monochromator_flat, multiples of) will be applied. Other important parameters
are the piece height and width, yy and zy, respectively, the horizontal and vertical
mosaicities, n, and 7, respectively. If just one mosaicity, 7, is specified, this the same
for both directions.

The number of pieces vertically and horizontally are called n, and ny, respectively,
and the vertical and horizontal radii of curvature are named r, and ry,, respectively. All
single crystals are positioned in the same vertical plane, but tilted accordingly to the
curvature radius.

The constant monochromator reflectivity, Ry can be replaced by a file of tabulated
reflectivities reflect (*.rfl in MCSTAS/data). In the same sense, the transmission
can be modeled by a tabulated file transmit (for non-reflected neutrons, *.trm in
MCSTAS/data). The most useful of these files for Monochromator_curved are HOPG.rlf
and HOPG. trm.

As for Monochromator_flat, the crystal is assumed to be infinitely thin, and the
variation in lattice spacing, (Ad/d), is assumed to be zero. Hence, this component is not

71

Monochromator curved

sy
s
0.05 { st
E 0 i
= MMEWM:
it 2.95
-0.05{) 3
3.05
z/[m]
x/[m]

Figure 7.3.: A curved monochromator

suitable for simulating backscattering instruments or to investigate multiple scattering
effects.

The theory and algorithm for scattering from the individual blades is described under
Monochromator_flat.

7.3. Single _crystal: Thick single crystal monochromator plate
with multiple scattering

The Single_crystal component may be used to study more complex monochromators,
including incoherent scattering, thickness and multiple scattering. Please refer to section

B4

7.4. Phase space transformer - moving monochromator

Eventhough there exist a few attempts to write dedicated phase space transformer com-
ponents, there is an elegant way to put a monochromator into move, by mean of the
EXTEND keyword. If you define a SPEED parameter for the instrument, the idea is to
change the coordinate system before the monochromator, and restore it afterwards, as
follow in the TRACE section:

72

0~ O Uk W

= e e e e
0O ULk W~ OO

DEFINE INSTRUMENT PST (SPEED=200, ...)
TRA
COMPONENT Mono_PST _on=Arm ()
AT ...
EXTEND %({
vx = vx + SPEED; // monochromator moves transversaly by SPPED m/s
7o}

COMPONENT Mono=Monochromator (...)
AT (0,0,0) RELATIVE PREVIOUS

COMPONENT Mono_PST _off=Arm
AT (0,0,0) RELATIVE PREVIOUS
EXTEND %({
vz = vz — SPEED; // puts back neutron in static coordinate frame

%}

This solution does not contain acceleration, but is far enough for most studies, and it is
very simple. In the latter example, the instance Mono_PST_on should itself be rotated
to reflect according to a Bragg law.

73

8. Samples

This class of components models the sample of the experiment. This is by far the most
challenging part of a neutron scattering instrument to model. However, for purpose
of simulating instrument performance, details of the samples are rather unimportant,
allowing for simple approximations. On the contrary, for full virtual experiments it is
of importance to have realistic and detailed sample descriptions. McStas contains both
simple and detailed samples.

We first consider incoherent scattering. The simple component V-sample performs
both incoherent scattering and absorption.

An important component class is elastic Bragg scattering from an ideal powder. The
component PowderN models a powder scatterer with reflections given in an input
file. To scatter on a single Bragg peak, the Powderl component may be used. The
component includes absorption, incoherent scattering, direct beam transmission and can
assume concentric shape, i.e. can be used for modelling sample enviroments.

Next type is Bragg scattering from single crystals. The simplest single crystals are in
fact the monochromator components like Monochromator_flat, presented in section
The monochromators are models of a thin mosaic crystal with a single scattering vec-
tor perpendicular to the surface. Much more advanced, the component Single_crystal
is a general single crystal sample (with multiple scattering) that allows the input of an
arbitrary unit cell and a list of structure factors, read from a LAZY / Crystallographica
file. This component also allows anisotropic mosaicity and Ad/d lattice space variation.

Isotropic small-angle scattering is simulated in Sans_Spheres, which models scatter-
ing from a collection of hard spheres (dilute colloids).

Inelastic scattering from a dispersion is exemplified by the component Phonon_simple,
which models scattering from a single acoustic phonon branch.

For a more general sample model, the Isotropic_Sqw component is able to simulate
all kinds of isotropic materials: Liquids, glasses, polymers, powders, etc, with S(q,w)
table specified by an input file. Physical processes include coherent/incoherent scatter-
ing, both elastic and inelastic, with absorption and multiple scattering. Moreover, this
component may be used concentrically, to model a sample environment. Thus it may
handle most samples except single crystals.

8.0.1. Neutron scattering notation

In sample components, we use the notation common for neutron scattering, where the
wave vector transfer is denoted the scattering vector

q=k; — k¢ (8.1)

74

Sample Coherent Incoherent
Process Elastic Inelastic | Elastic Inelastic | Absorption | Multi. Scatt.
Phonon_simple X 1
Isotropic_Sqw X X X X 2 X
Powderl 1 line X 1
PowderN N lines X 1
Sans_spheres colloid 1
Single_crystal X X 2 X
V_sample X QE broad. 1
Tunneling_sample X X QE broad. 1

Table 8.1.: Processes implemented in sample components. Absorption: 1=single only,
2=with secondary

In analygo, the energy transfer is given by
h2

n

hw=EFE;,— FE;=

(k? = kf) - (82)

8.0.2. Weight transformation in samples; focusing

Within many samples, the incident beam is attenuated by scattering and absorption, so
that the illumination varies considerably throughout the sample. For single crystals, this
phenomenon is known as secondary extinction [Bac75|, but the effect is important for all
samples. In analytical treatments, attenuation is difficult to deal with, and is thus often
ignored, making a thin sample approximation. In Monte Carlo simulations, the beam
attenuation is easily taken care of, as will be shown below. In the description, we ignore
multiple scattering, which is however implemented in some sample components.

The sample has an absorption cross section per unit cell of ¢ and a scattering cross
section per unit cell of 0. The neutron path length in the sample before the scattering
event is denoted by l;, and the path length within the sample after the scattering is
denoted by la, see figure We then define the inverse penetration lengths as p® =
o8 /V. and p® = 0% /V,, where V. is the volume of a unit cell. Physically, the attenuation
along this path follows

Jae () = exp(=I(p” + p)), (8.3)
where the normalization fa(0) = 1.
The probability for a given neutron ray to be scattered from within the interval [l1;1; +
dl] will be
P(ly)dl = p? fas (11)dl, (8.4)
while the probability for a neutron to be scattered from within this interval into the
solid angle € and not being scattered further or absorbed on the way out of the sample
is
P(ly, Q)dld = 1 fars () fase (12)7(Q)dull, (8.5)

75

0

/\ﬁ“\\

\

Figure 8.1.: The geometry of a scattering event within a powder sample.

where () is the directional distribution of the scattered neutrons, and I is determined
by Monte Carlo chocies of I1, €2, and from the sample geometry, see e.g. figure

In our Monte-Carlo simulations, we may choose the scattering parameters by making
a Monte-Carlo choice of I and Q from a distribution different from P(l1,2). By doing
this, we must adjust m; according to the probability transformation rule (??). If we
e.g. choose the scattering depth, /1, from a flat distribution in [0;lgy], and choose the
directional dependence from ¢(f2), we have a Monte Carlo probability

f(lb Q) = g(Q)/lfulla (8.6)

ltan is here the path length through the sample as taken by a non-scattered neutron
(although we here assume that all simulated neutrons are being scattered). According
to (?7), the neutron weight factor is now adjusted by the amount

711, 9) = @l oxp [~ (1 + 1) (u® + 1°)] ’;g; (8.7)

In analogy with the source components, it is possible to define ”interesting” directions
for the scattering. One will then try to focus the scattered neutrons, choosing a g(£2),
which peaks around these directions. To do this, one uses , where the fraction
v(£2)/g(€2) corrects for the focusing. One must choose a proper distribution so that
g(€2) > 0 in every interesting direction. If this is not the case, the Monte Carlo simulation
gives incorrect results. All samples have been constructed with a focusing and a non-
focusing option.

76

Figure 8.2.: The geometry of the hollow-cylinder vanadium sample.

8.0.3. Future development of sample components

There is still room for much more development of functionality in McStas samples.

A more general SANS sample is under development. In addition, a reflectometry
sample will soon be developed. In the mean time, you may use the SiC contributed
component.

In general, all samples are assumed to be homogeneous. There would also be potential
in developing an inhomogeneous sample, e.g. with spatially varying lattice constant,
relevant for stress/strain scanners. Inhomogeneously absorbing sample for tomography
could also be possible. Further, no polarization effects are yet taken into account in any
of the samples.

8.1. Incoherent: An incoherent scatterer, the V-sample

Input Parameters for component Incoherent from samples

l|<Parameter = value>, [Unit], Description I

A sample with incoherent scattering, e.g. vanadium, is frequently used for calibration
purposes, as this gives an isotropic, elastically scattered beam.

The component V_sample has only absorption and incoherent elastic scattering. For
the sample geometry, we default use a hollow cylinder (which has the solid cylinder as a
limiting case). The sample dimensions are: Inner radius 74, outer radius ., and height
h, see figure [8:2]

Alternatively, the sample geometry can be made rectangular by specifying the width,
wy, the height, h,, and the thickness, ..

The incoherent and absorption cross sections for V are default for the component. For
other choices, the parameters i, 0abs, and the unit cell volume Vi should be specified.

7

For a loosely packed sample, also the packing factor, fpack can be specified (default value
of 1).

8.1.1. Physics and algorithm

The incoherent scattering gives a uniform angular distribution of the scattered neutrons
from each nucleus: y(€2) = 1/4x. For the focusing we choose to have a uniform distribu-
tion on a target sphere of radius 7, at the position (Ziarget, Ysarget, Ztarget) i the local
coordinate system. This gives an angular distribution (in a small angle approximation)
of
o L+l
g 4 (7r?)
The focusing can alternatively be performed on a rectangle with dimensions wigcus,
Rfocus, or uniformly in angular space (in a small-angle approximation), using wsoc, angle>
Psoc, angle- The focusing location can be picked to be a downstream component by spec-
ifying

(8.8)

target_index.

When calculating the neutron path length within the cylinder, the kernel function
cylinder_intersect is used twice, once for the outer radius and once for the inner
radius.

Multiple scattering is not included in this component. To obtain intensities similar to
real measured ones, we therefore do not take attenuation from scattering into account
for the outgoing neutron ray.

8.1.2. Remark on functionality

When simulating a realistic incoherent hollow cylinder sample one finds that the resulting
direction dependence of the scattered intensity is not isotropic. This is explained by the
variation of attenuation with scattering angle. One test result is shown in the instrument
example chapter of the McStas User Manual.

The Samples_vanadium and Samples_incoherent test/example instruments exist in
the distribution for this component.

78

8.2. Tunneling_sample: An incoherent inelastic scatterer

Input Parameters for component Tunneling sample from samples

1|<Parameter = value>, [Unit], Description I

The component Tunneling_sample displays incoherent inelastic scattering as found
in a number of systems, e.g. containing mobile hydrogen.

For the sample geometry, we default use a hollow cylinder (which has the solid cylinder
as a limiting case). The sample dimensions are: Inner radius rj, outer radius r,, and
height h. This geometry is the same as the default for V_sample, see figure [8.2]

As for V_sample, the sample geometry can be made rectangular by specifying the
width, w;, the height, h,, and the thickness, ¢..

Also the focusing properties are the same as for V_sample. For the focusing is
performed as a uniform distribution on a target sphere of radius 7., at the position
(Ztarget, Ytarget s Ztarget) il the local coordinate system. The focusing can alternatively be
performed on a rectangle with dimensions wWeycus, Rfocus, O uniformly in angular space
(in a small-angle approximation), using W, angles Pfoc, angle- Lhe focusing location can
be picked to be a downstream component by specifying target_index.

The incoherent and absorption cross sections for V are default for the component. For
other choices, the parameters ojnc, 0aps, and the unit cell volume Vj should be specified.
For a loosely packed sample, also the packing factor, fpack can be specified (default value
of 1).

The inelastic scattering takes place as a quasielastic (Lorentzian) component, which
is chosen with probability fqor. The broadening of the signal is given by I' (HWHM). In
addition, a tunneling signal is present with a probability of fiu, and a tunneling energy
of £F¢yn. The tunneling peaks are weighted by the usual factor k¢/k;.

The total scattering cross section is given by

Q Q)LL’ 1 J QE J inel é Ai(.b 8‘9
Jine kf
+ 17

T
hw)Q +1?2 2 fi

+ fau 500~ B + 60+ B}

The component takes care that fqr + frun < 1, otherwise an error is returned.

The component accounts for absorption, but not multiple scattering. To obtain inten-
sities similar to real measured ones, we therefore do not take attenuation from scattering
into account for the outgoing neutron ray.

79

8.3. PowderN: A general powder sample

Input Parameters for component PowderN from samples

1|<Parameter = value>, [Unit], Description I

The powder diffraction component PowderN models a powder sample with back-
ground coming only from incoherent scattering and no multiple scattering. At the users
choice, a given percentage of the incoming events may be transmitted (attenuated) to
model the direct beam. The component can also assume concentric shape, i.e. be used
for describing sample environment (cryostat, sample container etc.).

The description of the powder comes from a file in one of the standard output formats
LAZY, FULLPROF, or CRYSTALLOGRAPHICA.

A usage example of this component can be found in the
Neutron site/Tutorial/templateDIFF instrument from the mcgui.

8.3.1. Files formats: powder structures

Data files of type lau and laz in the McStas distribution data directory are self-
documented in their header. A list of common powder definition files is available in
Table (page . They do not need any additional parameters to be used, as in the

example:

1 PowderN(<geometry parameters>, filename="Al.laz”)

Other column-based file formats may also be imported e.g. with parameters such as:

—_

format=Crystallographica
2 format=Fullprof
format={1,2,3,4,0,0,0,0}

w

In the latter case, the indices define order of columns parameters multiplicity, lattice
spacing, F?, Debye-Waller factor and intrinsic line width.

The column signification may as well explicitely be set in the data file header using
any of the lines:

#column_j <index of the multiplicity ’j’ column>

#column_d <index of the d—spacing ’'d’ column>

#column_F2 <index of the squared str. factor ’|F|"2’ column [b]>
#column_F <index of the structure factor norm ’|F|’ column>

#column_DW <index of the Debye—Waller factor DW’ column>
#column_Dd <index of the relative line width Delta_.d/d ’'Dd’ column>
#column_inv2d <index of the 1/2d=sin(theta)/lambda ’inv2d’ column>

#column_q <index of the scattering wavevector ’q’ column>

0 O Ui W=

Other component parameters may as well be specified in the data file header with
lines e.g.:

1| #V_rho <value of atom number density [at/Angs”3]>
21 #Vc <value of unit cell volume Vc [Angs”3]>

80

© 00 O Uk W

Tk W N

© 00N>

#sigma_abs <value of Absorption cross section [barns]>
#sigma_inc <value of Incoherent cross section [barns]>
#Debye_Waller <value of Debye—Waller factor DW>
#Delta_d/d <value of Delta_d/d width for all lines>
#density <value of material density [g/cm”3]>
#weight <value of material molar weight [g/mol]>
#nb_atoms <value of number of atoms per unit cell>

Further details on file formats are available in the mcdoc page of the component.

8.3.2. Geometry, physical properties, concentricity

The sample has the shape of a solid cylinder, radius r and height h or a box-shaped
sample of size zwidth x yheight x zdepth. At the users choice, an inner "hollow’ can be
specified using the parameter thickness.

As the Isotropic_Sqw component PowderN assumes concentric shape, i.e. can
contain other components inside the inner hollow. To allow this, two almost identical
copies of the PowderN components must be set up around the internal component(s),
for example:

COMPONENT Cryo = PowderN(reflections="Al.laz”, radius = 0.01, thickness =
0.001,
concentric = 1)
AT (0,0,0) RELATIVE Somewhere

COMPONENT Sample = some_other_component (with geometry FULLY enclosed in the
hollow)
AT (0,0,0) RELATIVE Somewhere

COOMPONENT Cryo2 = COPY(Cryo) (concentric = 0)
AT (0,0,0) RELATIVE Somewhere

As outlined, the first instance of PowderN must have concentric = 1 and the in-
stance must have concentric = 0. Furthermore, the component(s) inside the hollow
must have a geometry which can be fully contained inside the hollow.

In addition to the coherent scattering specified in the reflections file, absorption-
and incoherent cross sections can be given using the input parameters op and o7.

The Bragg scattering from the powder, o7 is calculated from the input file, with the
parameters Q, |F(Q)|?, and j for the scattering vector, structure factor, and multiplicity,
respectively. The volume of the unit cell is denoted V¢, while the sample packing factor
is f pack-

Focusing is performed by only scattering into one angular interval, d¢ of the Debye-
Scherrer circle. The center of this interval is located at the point where the Debye-
Scherrer circle intersects the half-plane defined by the initial velocity, v;, and a user-
specified vector, f.

81

2theta

i

Figure 8.3.: The scattering geometry of a powder sample showing part of the Debye-
Scherrer cone (solid lines) and the Debye-Scherrer circle (grey).

8.3.3. Powder scattering

An ideal powder sample consists of many small crystallites, although each crystallite
is sufficiently large not to cause measurable size broadening. The orientation of the
crystallites is evenly distributed, and there is thus always a large number of crystallites
oriented to fulfill the Bragg condition

nA = 2dsin 0, (8.10)

where n is the order of the scattering (an integer), A is the neutron wavelength, d is
the lattice spacing of the sample, and 26 is the scattering angle, see figure As all
crystal orientations are realised in a powder sample, the neutrons are scattered within
a Debye-Scherrer cone of opening angle 46 [Bac75].

Equation may be cast into the form

Q| = 2|K]sin 6, (8.11)

where Q is a vector of the reciprocal lattice, and k is the wave vector of the neutron.
It is seen that only reciprocal vectors fulfilling |Q| < 2|k| contribute to the scattering.
For a complete treatment of the powder sample, one needs to take into account all these
Q-values, since each of them contribute to the attenuation.

The strength of the Bragg reflections is given by their structure factors

2

ij exp(R; - Q)| , (8.12)

82

— =

O © 00~ O Ui W N

where the sum runs over all atoms in one unit cell. This structure factor is non-zero
only when () equals a reciprocal lattice vector.

The textbook expression for the scattering cross section corresponding to one Debye-
Scherrer cone reads |[Squ78| ch.3.6], with V' = NV}, being the total sample volume:

Voa
Teone = 57— Y [F(Q). (8.13)
Q

For our purpose, this expression should be changed slightly. Firstly, the sum over struc-
ture factors for a particular @) is replaced by the sum over essentially different reflections
multiplied by their multiplicity, j. Then, a finite packing factor, f, is defined for the
powder, and finally, the Debye-Waller factor is multiplied on the elastic cross section to
take lattice vibrations into account (no inelastic background is simulated, however). We
then reach

= j o X pq)p 8.14
Ocone, Q =]Qfexp(_)%2 4sin9’ (Q)| (.)

3 N 47° jo| F(Q)?

= fexp(—QW)—VO = 0 (8.15)

in the thin sample approximation. For samples of finite thickness, the beam is being
attenuated by the attenuation coefficient

HQ = Ocone,/ V- (8.16)

For calibration it may be useful to consider the total intensity scattered into a detector of
effective height h, covering only one reflection [Squ78| ch.3.6]. A cut though the Debye-
Scherrer cone perpendicular to its axis is a circle. At the distance r from the sample,
the radius of this circle is 7 sin(26). Thus, the detector (in a small angle approximation)
counts a fraction h/(27rsin(260)) of the scattered neutrons, giving a resulting count
intensity:
=T _h
— T OconeQo sin(26)’

where ¥ is the flux at the sample position.
For clarity we repeat the meaning and unit of the symbols:

(8.17)

\begin{tabular}{ccl}

Ψ & s$°{—1}$m$"{—2}$ & Incoming intensity of neutrons \\

I & s$°{—1}$ & Detected intensity of neutrons \\

h & m Height of detector \\

r & m Distance from sample to detector \\

$£8 & 1 Packing factor of the powder \\

$j% & 1 Multiplicity of the reflection \\

$V_08 & m$"{3}$ & Volume of unit cell\\

$|F(\textbf{Q})| 2% & m$"28 & Structure factor \\

$\exp(—2W)$ & 1 & Debye—Waller factor \\

$\mu_\textrm{Q}$ & m$"{—1}$ & Linear attenuation factor due to scattering
from

e

83

12| one powder line. \\
13| \end{tabular}

A powder sample will in general have several allowed reflections Q;, which will all
contribute to the attenuation. These reflections will have different values of |F (Qj)|2
(and hence of Q;), jj, exp(—2Wj), and ;. The total attenuation through the sample
due to scattering is given by p® = ui . + Zj 15, where pif,. represents the incoherent
scattering.

8.3.4. Algorithm

The algorithm of PowderNN can be summarized as

Check if the neutron ray intersects the sample (otherwise ignore the following).

Calculate the attenuation coefficients for scattering and absorption.

Perform Monte Carlo choices to determine the scattering position, scattering type
(coherent /incoherent), and the outgoing direction.

Perform the necessary weight factor transformation.

84

8.4. Single crystal: The single crystal component

Input Parameters for component Single_crystal from samples

1|<Parameter = value>, [Unit], Description

The Single_crystal component models a thick, flat single crystal with multiple scat-
tering and absorption with elastic coherent scattering. An elastic incoherent background
may also be simulated. It may be used to describe samples for diffraction, but also for
accurate monochromator descriptions. The component is currently under further review.
The current documentation is outdated, especially with respect to the model of crystal
mosaicity.

The input parameters for the component are zwidth, yheight, and zdepth to define the
dimensions of the crystal in meters (area is centered); delta_d_d to give the value of Ad/d
(no unit); (az, ay, az), (bzx, by, bz), and (cz, cy, cz) to define the axes of the direct lattice
of the crystal (the sides of the unit cell) in units of Angstrgm; and reflections, a string
giving the name of the file with the list of structure factors to consider. The mosaic is
specified either isotropically as mosaic, or anisotropically as mosaic_h (rotation around
the Y axis), mosaic_v (rotation around the Z axis), and mosaic_n (rotation around the
X axis); in all cases in units of full-width-half-maximum minutes of arc.

Optionally, the absorption cross-section at 2200 m/s and the incoherent cross-section
may be given as absorption and incoherent (in barns), with default of zero; and p_transmit
may be assigned a fixed Monte Carlo probability for transmission through the crystal
without any interaction.

The user must specify a list of reciprocal lattice vectors 7 to consider along with their
structure factors |F|?. The user must also specify the coordinates (in direct space) of
the unit cell axes a, b, and ¢, from which the reciprocal lattice will be computed. See
section for file format specifications.

In addition to coherent scattering, Single_crystal also handles incoherent scattering
and absorption. The incoherent scattering cross-section is supplied by the user as a

constant oi,.. The absorption cross-section is supplied by the user at 2200 m/s, so the
2200 m/s

actual cross-section for a neutron of velocity v is oaps = 02200~

8.4.1. The physical model

The textbook expression for the scattering cross-section of a crystal is [Squ78, ch.3]:

g ™ 3
(;‘;Q) - —N(2VO) S 6(r — k) |Fr (8.18)

Here |F|? is the structure factor (defined in section , N is the number of unit cells,
Vo is the volume of an individual unit cell, and x(= k; — ky) is the scattering vector.
d(x) is a 3-dimensional delta function in reciprocal space, so for given incoming wave
vector k; and lattice vector 7, only a single final wave vector ky is allowed. In general,
this wavevector will not fulfill the conditions for elastic scattering (k¢ = k;). In a real

85

Ewald
Sphere

del-d-d

k

mosaic

Figure 8.4.: Ewald sphere construction for a single neutron showing the Gaussian broad-
ening of reciprocal lattice points in their local coordinate system.

crystal, however, reflections are not perfectly sharp. Because of imperfection and finite-
size effects, there will be a small region around 7 in reciprocal space of possible scattering
vectors.

Single_crystal simulates a crystal with a mosaic spread n and a lattice plane spacing
uncertainty Ad/d. In such crystals the reflections will not be completely sharp; there
will be a small region around each reciprocal lattice point of the crystal that contains
valid scattering vectors.

We model the mosaicity and Ad/d of the crystal with 3-dimensional Gaussian functions
in reciprocal space (see figure . Two of the axes of the Gaussian are perpendicular
to the reciprocal lattice vector 7 and model the mosaicity. The third one is parallel
to 7 and models Ad/d. We assume that the mosaicity is small so that the possible
directions of the scattering vector may be approximated with a Gaussian in rectangular
coordinates.

If the mosaic is isotropic (the same in all directions), the two Gaussian axes perpen-
dicular to T are simply arbitrary normal vectors of equal length given by the mosaic.
But if the mosaic is anisotropic, the two perpendicular axes will in general be different
for each scattering vector. In the absence of anything better, Single_crystal uses a
model which is at least mathematically plausible and which works as expected in the
two common cases: (1) isotropic mosaic, and (2) two mosaic directions (“horizontal and

86

vertical mosaic”) perpendicular to a scattering vector.

The basis for the model is a three-dimensional Gaussian distribution in FEuler angles
giving the orientation probability distribution for the micro-crystals; that is, the mis-
orientation is given by small rotations around the X, Y, and Z axes, with the rotation
angles having (in general different) Gaussian probability distributions. For given scat-
tering vector 7, a rotation of the micro-crystals around an axis parallel to 7 has no effect
on the direction of the scattering vector. Suppose we form the intersection between the
three-dimensional Gaussian in Euler angles and a plane through the origin perpendicular
to 7. This gives a two-dimensional Gaussian, say with axes defined by unit vectors g,
and g, and mosaic widths n; and 7,.

We now let the mosaic for 7 be defined by rotations around g, and g, with angles
having Gaussian distributions of widths 7; and 72. Since g4, g9, and T are perpendicular,
a small rotation of 7 around g; will change 7 in the direction of go. The two axes of
the Gaussian mosaic in reciprocal space that are perpendicular to 7 will thus be given
by 7129, and 711 9,.

We now derive a quantitative expression for the scattering cross-section of the crystal
in the model. For this, we introduce a local coordinate system for each reciprocal lattice
point 7 and use x for vectors written in local coordinates. The origin is 7, the first axis
is parallel to 7 and the other two axes are perpendicular to 7. In the local coordinate
system, the 3-dimensional Gaussian is given by

2 2 2
11 e
G(x1,z9,23) = —e 1 2 3 8.19
(o1225) = (819)
The axes of the Gaussian are 07 = TAd/d and 09 = 03 = n7. Here we used the

assumption that 7 is small, so that tann ~ n (with 7 given in radians). By introducing
the diagonal matrix

02 0 0
D=| 0 103 0
2
0 0 50’3
equation (8.19) can be written as
1 1 —zTDx

G(z) = (8.20)

—€
(V2m)3 010203

again with @ = (x1, x2, x3) written in local coordinates.

To get an expression in the coordinates of the reciprocal lattice of the crystal, we
introduce a matrix U such that if y = (y1, y2,y3) are the global coordinates of a point in
the crystal reciprocal lattice, then U(y + 7) are the coordinates in the local coordinate
system for 7. The matrix U is given by

UT = (’111,122,'&3),

where 1, 1o, and U3 are the axes of the local coordinate system, written in the global
coordinates of the reciprocal lattice. Thus @; = 7/7, and Uy and ug are unit vectors

87

perpendicular to %1 and to each other. The matrix U is unitarian, that is U~1 = UT.
The translation between global and local coordinates is

x=U(y+T1) y=Ule—r1

The expression for the 3-dimensional Gaussian in global coordinates is

1 1 T
_ (U +) T DU (g +7)
Gw) (v/2m)3 010203 (8.21)

The elastic coherent cross-section is then given by

o2 7 3
Czl(z) . :N(QVO)ZG(TRHFTF (8.22)

8.4.2. The algorithm

The overview of the algorithm used in the Single_crystal component is as follows:

1.
2.

7.
8.

Check if the neutron intersects the crystal. If not, no action is taken.

Search through a list of reciprocal lattice points of interest, selecting those that
are close enough to the Ewald sphere to have a non-vanishing scattering prob-
ability. From these, compute the total coherent cross-section oco (see below),

2200 m/s
v

the absorption cross-section o,,s = 0 2900 , and the total cross-section

Otot = Ocoh + Tinc + Tabs-

. The transmission probability is exp(—%¢t¢) where ¢ is the length of the flight path

through the crystal. A Monte Carlo choice is performed to determine whether
the neutron is transmitted. Optionally, the user may set a fixed Monte Carlo
probability for the first scattering event, for example to boost the statistics for a
weak reflection.

For non-transmission, the position at which the neutron will interact is selected
from an exponential distribution. A Monte Carlo choice is made of whether to
scatter coherently or incoherently. Absorption is treated by weight adjustment
(see below).

. For incoherent scattering, the outgoing wave vector k¢ is selected with a random

direction.

. For coherent scattering, a reciprocal lattice vector is selected by a Monte Carlo

choice, and ks is found (see below).
Adjust the neutron weight as dictated by the Monte Carlo choices made.

Repeat from until the neutron is transmitted (to simulate multiple scattering).

For point |2 the distance dist between a reciprocal lattice point and the Ewald sphere

is considered small enough to allow scattering if it is less than five times the maximum
axis of the Gaussian, dist < 5max(o1,02,03).

88

Tangential

plane

Figure 8.5.: The scattering triangle in the single crystal.

8.4.3. Choosing the outgoing wave vector

The final wave vector kf must lie on the intersection between the Ewald sphere and
the Gaussian ellipsoid. Since 1 and Ad/d are assumed small, the intersection can be
approximated with a plane tangential to the sphere, see figure The tangential point
is taken to lie on the line between the center of the Ewald sphere —k; and the reciprocal
lattice point 7. Since the radius of the Ewald sphere is k& ;, this point is

o=(ki/p—1)p—7
where p = k; — T.
The equation for the plane is
Pt)=o0+Bt, tcR? (8.23)

Here B = (b1,bs) is a 3 x 2 matrix with the two generators for the plane b; and bs.
These are (arbitrary) unit vectors in the plane, being perpendicular to each other and
to the plane normal n = p/p.

Each t defines a potential final wave vector kg(t) = k; + P(t). The value of the
3-dimensional Gaussian for this kg is

G 1 1 —x(t)T Dx(t)
.24
(m(t)) (\/27‘(‘)3 0'1020'3€ (8)

where x(t) = 7 — (ki — k¢(t)) is given in local coordinates for 7. It can be shown that
equation (8.24) can be re-written as

1 1 T
— —a,—(t—tg) " M(t—to) 9
G(z(t)) (Van) 0_102036 e (8.25)

89

where M = BTDB is a 2 x 2 symmetric and positive definite matrix, ¢y = —M BT Do
is a 2-vector, and o = —tOTMtO + 0T Do is a real number. Note that this is a two-
dimensional Gaussian (not necessarily normalized) in ¢ with center ¢, and axis defined
by M.

To choose k¢ we sample ¢ from the 2-dimensional Gaussian distribution (8.25). To do

this, we first construct the Cholesky decomposition of the matrix (%M —1). This gives

a 2 x 2 matrix L such that LLT = %M ~1 and is possible since M is symmetric and
positive definite. It is given by

Now let g = (g1, 92) be two random numbers drawn form a Gaussian distribution with
mean 0 and standard deviation 1, and let t = Lg + ty3. The probability of a particular ¢
is then

P(t)dt = 276_59 gdg (826)

T
1 1 1 —1 T —1

— = 3L (—t0)) (LT (t—t0))
5 Aot LE dt (8.27)
1 1 T

- 7(757750) M(tfto)
5 Aot L.C dt (8.28)

where we used that g = L™1(t — tg) so that dg = ﬁdt. This is just the normalized
form of (8.25). Finally we set ki = k; + P(t) and k¢ = (ki/k’;)k} to normalize the length
of k; to correct for the (small) error introduced by approximating the Ewald sphere with
a plane.

8.4.4. Computing the total coherent cross-section

To determine the total coherent scattering cross-section, the differential cross-section
must be integrated over the Ewald sphere:

do
Ocoh = T2y dQ
/Evvald < ds2 > coh.el.

90

For small mosaic we may approximate the sphere with the tangential plane, and we thus
get from (8.22)) and (8.25)):

9 3
eonr = / N<;> G(T — K)|Fyr[2dQ (8.29)
0
1 (2n)3 1 e @ 2/ (—t)T M (t—
= =N F e~ (tt0)" M(t—t0) gt 8.30
kI Vo (v2m)3 010203| ! (8.30)
1 (2m)3/%2 e o [_1,T
= det(L)—N F, 99 8.31
(L) gVl [oo dg (831
1 (2m)3/2 e« 9
= 2rdet(L)N F, 32
mdet(L) s NP (8.32)

(2

det(L) ._(2m)5/2 e~@ 9
= N F 8.33
k2 Vo 010203 £ (8.33)

%
Ocoh = ZUcoh,‘r (8.34)
T

As before, we let g = L™1(t — tg) so that dt = det(L)dg.

Neutron weight factor adjustment We now calculate the correct neutron weight ad-
justment for the Monte Carlo choices made. In three cases is a Monte Carlo choice made
with a probability different from the probability of the corresponding physical event:
When deciding whether to transmit the neutron or not, when simulating absorption,
and when selecting the reciprocal lattice vector T to scatter from.

If the user has choosen a fixed transmission probability f(transmit) = piransmit, the

neutron weight must be adjusted by
) P(transmit)
m(transmit) = ———=
f(transmit)

where P(transmit) = exp(—%#t/) is the physical transmission probability. Likewise, for
0

non-transmission the adjustment is

1 — P(transmit)

1 — f(transmit)

m(no transmission) =

Absorption is never explicitly simulated, so the Monte Carlo probability of coherent
or incoherent scattering is f(coh) + f(inc) = 1. The physical probability of coherent or

incoherent scattering is
P(coh) + P(inc) = Tcoh 7 ine
Otot
so again a weight adjustment 7(coh|inc) = II(coh|inc)/ f(coh|inc) is needed.
When choosing the reciprocal lattice vector 7 to scatter from, the relative probability
for Tis ry = 0 con,r/ |F-|?. This is done to get better statistics for weak reflections. The
Monte Carlo probability for the reciprocal lattice vector 7 is thus

Tr

91

U W N =

© 00 O Ui Wi+

whereas the physical probability is P(T) = 0 coh,r/0con- A weight adjustment is thus
needed of
7_(_(7_) _ P(T) _ Ocoh,T Z-,— T‘r‘
f (T) Ocoh T'r

In most cases, however, only one reflection is possible, whence m = 1.

8.4.5. Implementation details

The equations describing Single_crystal are quite complex, and consequently the code
is fairly sizeable. Most of it is just the expansion of the vector and matrix equations in
individual coordinates, and should thus be straightforward to follow.

The implementation pre-computes a lot of the necessary values in the INITIALIZE
section. It is thus actually very efficient despite the complexity. If the list of reciprocal
lattice points is big, however, the search through the list will be slow. The precomputed
data is stored in the structures hkl_info and in an array of hkl_data structures (one for
each reciprocal lattice point in the list). In addition, for every neutron event an array
of tau_data is computed with one element for each reciprocal lattice point close to the
Ewald sphere. Except for the search for possible 7 vectors, all computations are done
in local coordinates using the matrix U to do the necessary transformations.

The list of reciprocal lattice points is specified in an ASCII data file. Each line
contains seven numbers, separated by white space. The first three numbers are the
(h, k,1) indices of the reciprocal lattice point, and the last number is the value of the
structure factor |Fr|?, in barns. The middle three numbers are not used and may be
omitted; they are nevertheless recommended since this makes the file format compatible
with the output from the Crystallographica program . Any line beginning with any
character of #;/% is considered to be a comment, and lines which can not be read as
vectors/matrices are ignored.

The column signification may also explicitely be set in the data file header using any
of the lines:

#column_h <index of the Bragg Qh column>
#column_k <index of the Bragg Qk column>
#column_l <index of the Bragg Ql column>

#column_F2 <index of the squared str. factor ’|F|"2’ column [b]>
#column_F <index of the structure factor norm ’|F|’ column>

Other component parameters may as well be specified in the data file header with
lines e.g.:

#sigma_abs <value of Absorption cross section [barns]>
#sigma_inc <value of Incoherent cross section [barns]>
#Delta_d/d <value of Delta_d/d width for all lines>
#lattice_a <value of the a lattice parameter [Angs]>
#lattice_a <value of the b lattice parameter [Angs]>
#lattice_a <value of the ¢ lattice parameter [Angs]>
#lattice_aa <value of the alpha lattice angle [deg]>
#lattice_bb <value of the beta lattice angle [deg]>
#lattice_cc <value of the gamma lattice angle [deg]>

92

Example data *.1lau files are given in directory MCSTAS/data.
These files contain an extensive self-documented header defining most the sample
parameters, so that only the file name and mosaicity should be given to the component:

Single_crystal (xwidth=0.01, yheight=0.01, zdepth=0.01,
mosaic = 5, reflections="YBaCuO.lau”)

Powder files from ICSD/LAZY and Fullprof may also be used (see Table
page [15)). We do not recommend to use these as the equivalent ¢ vectors are
superposed, not all Bragg spots will be simulated, and the intensity will not be scaled
by the multiplicity for each spot.

93

8.5. Sans_spheres: A sample of hard spheres for small-angle
scattering

Input Parameters for component Sans_spheres from samples

1|<Parameter = value>, [Unit], Description

The component Sans_spheres models a sample of small independent spheres of radius
R, which are uniformly distributed in a rectangular volume x,, X yp X 2z; with a volume
fraction ¢. The absorption cross section density for the spheres is o, (in units of m=1),
specified for neutrons at 2200 m/s. Absorption and incoherent scattering from the
medium is neglected. The difference in scattering length density (the contrast) between
the hard spheres and the medium is called Ap. d denotes the distance to the (presumed
circular) SANS detector of radius R.

A usage example of this component can be found in the Neutron site/tests/SANS
instrument from the mcgui.

8.5.1. Small-angle scattering cross section

The neutron intensity scattered into a solid angle AQ for a flat isotropic SANS sample
in transmission geometry is given by [DLO3]|:

%(Q),
where W is the neutron flux, T is the sample transmission, A is the illuminated sample
area, and zmax the length of the neutron path through the sample.

In this component, we consider only scattering from a thin solution of monodisperse
hard spheres of radius R, where the volume-specific scattering cross section is given by
[DLO3]|

I(q) = UAQT Azpax (8.35)

e (g) = n(30)?V?11a), (5.36)

2

where f(q) = (3 Sin(qR)(; qRI)%;,»COS(qR)) , . is the number density of spheres, and V = 4/37 R3

is the sphere volume. (The density is thus n = ¢/V.)
Multiple scattering is ignored.

8.5.2. Algorithm

All neutrons, which hit the sample volume, are scattered. (Hence, no direct beam is
simulated.) For scattered neutrons, the following steps are taken:

1. Choose a value of ¢ uniformly in the interval [0; gmax]-

2. Choose a polar angle, «a, for the g-vector uniformly in [0; 7.
3. Scatter the neutron according to (g, @).
4

. Calculate and apply the correct weight factor correction.

94

8.5.3. Calculating the weight factor

The scattering position is found by a Monte Carlo choice uniformly along the whole

(unscattered) beam path with the sample, length lgy, giving f; = 1/lg. The direction

focusing on the detector gives (in an small angle approximation) fo = d?/(7R3,,).
Hence, the total weight tranformation factor becomes

mj = lan(TR3e /d®) [(4m)n(Ap) V2 f(q) exp(—pal), (8.37)

where p, is the linear attenuation factor due to absorption and [is the total neutron
path length within the sample.

This component does NOT simulate absolute intensities. This latter depends on the
detector parameters.

Some alternative implementations exist as contributed components.

The SANS test/example instrument exists in the distribution for this component.

95

8.6. Phonon_simple: A simple phonon sample

Input Parameters for component Phonon_simple from samples

l|<Parameter = value>, [Unit], Description

This component models a simple phonon signal from a single crystal of a pure element
in an fec crystal structure. Only one isotropic acoustic phonon branch is modelled, and
the longitudinal and transverse dispersions are identical with the velocity of sound being
c. Other physical parameters are the atomic mass, M, the lattice parameter, a, the
scattering length, b, the Debye-Waller factor, DW, and the temperature, 7. Incoherent
scattering and absorption are taken into account by the cross sections o, and ojyec.

The sample can have the form of a cylinder with height A and radius rg, or a box with
dimensions wy, hy, t..

Phonons are emitted into a specific range of solid angles, specified by the location
(x¢,yt, 2¢) and the focusing radius, ro. Alternatively, the focusing is given by a rectangle,
Wioeus aNd hgocus, and the focus point is given by the index of a down-stream component,
target_index.

Multiple scattering is not included in this component.

A usage example of this component can be found in the Neutron site/tests/Test_Phonon
instrument from the mcgui.

8.6.1. The phonon cross section

The inelastic phonon cross section for a Bravais crystal of a pure element is given by

Ref. [Squ78| ch.3]

d*o’ ke (2m)3 1
= p22 — -2
dQdE; kv, 23 o)
% ZM y1-1 S(wtwe)d(ktq—7), (8.38)
= wq,p nq7p 9 F 9 w CL)q7p K q T), .

where both annihilation and creation of one phonon is considered (represented by the
plus and minus sign in the dispersion delta functions, respectively). In the equation,
exp(—2W) is the Debye-Waller factor, DW and Vj is the volume of the unit cell. The
sum runs over the reciprocal lattice vectors, 7, over the polarisation index, p, and the N
allowed wave vectors q within the Brillouin zone (where N is the number of unit cells in
the crystal). Further, e,), is the polarization unit vectors, wy, the phonon dispersion,
and the Bose factor is (ng,) = (hexp(|lwgp|/ksT) — 1)L

We have simplified this expression by assuming no polarization dependence of the
dispersion, giving >_ (k- e,p)? = k%, We assume that the inter-atomic interaction is

nearest-neighbour-only so that the phonon dispersion becomes:

di(q) = c1/a\/z — sq, (8.39)

96

where z = 12 is the number of nearest neighbours and s, = > cos(q - ryn), where in
turn ry, is the lattice positions of the nearest neighbours.

This dispersion relation may be modified with a small effort, since it is given as a
separate c-function attatched to the component.

To calculate do/dS2 we need to transform the q sum into an integral over the Brillouin
zone by Zq — NV.(2m)™3 Jaz d3q. The k sum can now be removed by expanding the
q integral to infinity. All in all, the partial differential cross section reads

d*o’ ke 1 [hs? 11 ,
= N 2 - - _ _ 4+ + 3
deEf(R,W) b ki 2M | hw, <nq + 5 T 2> §(w twg)d(k £ q)d’q
ke h%k? 11
2 vf 01
N 20T, <”“ tay* 2> O(lw =+ dy (). (8.40)

8.6.2. The algorithm

All neutrons, which hit the sample volume, are scattered into a particular range of solid
angle, Af, like many other components. One of the difficult things in scattering from a
dispersion is to take care to fulfill the dispersion criteria and to find the correct weight
transformation.

In Phonon_simple, the following steps are taken:

1. If the sample is hit, calculate the total path length inside the sample, otherwise
leave the neutron ray unchanged.

2. Choose a scattering point inside the sample
3. Choose a direction for the final wave vector, k¢ within A€.

4. Calculate possible values of kr so that the dispersion relation is fulfilled for the
corresponding value of k¢. (There is always at least one possible k¢ value [Bac75|.)

5. Choose one of the calculated k; values.

6. Propagate the neutron to the scattering point and adjust the neutron velocity
according to k.

7. Calculate and apply the correct weight factor correction, see below.

8.6.3. The weight transformation

Before making the weight transformation, we need to calculate the probability for scat-
tering along one certain direction € from one phonon mode. To do this, we must
integrate out the delta functions in the cross section . We here use that hiw, =
h?(k? — k]%)/(2mN), k= ki — kik;, and the integration rule [&(f(z)) = (df /dz)(0)~".

Now, we reach

do’ d%o’ ke h2K2 1 1
=) = | 557 dBr = Nbv* - =), 8.41
(dQ>j /deEf f ki 2Mdy (i) J (ke ;) <” *3 2> (8.41)

97

where the Jacobian reads

my O

(8.42)

A rough order-of-magnitude consideration gives]i—l] ~1,J~1, (ne+3+3) ~1,
Pr?2 . m do ~ 2m : .
My (m) M Hence, (de)j ~ Nb”7;, and the phonon cross section becomes a fraction

of the total scattering cross section 47 Nb?, as it must be. The differential cross section
per unit volume is found from (8.41) by replacing N with 1/Vj.
The total weight transformation now becomes

ke s h2k 1 1
i = inlmax AQb2 o K = 4
i = AlinfmaxTts ki 2VoMdy (k)J (k) <" *3 2> ’ (8.43)

where ns is the number of possible dispersion values in the chosen direction.
The Test_Phonon test/example instrument exists in the distribution for this compo-
nent.

98

Isotropic Sqw (concentric arrangement)

Figure 8.6.: An [—*He sample in a cryostat, simulated with the Isotropic_Sqw component
in concentric geometry.

8.7. Isotropic_Sqw: A general S(q,w) coherent and incoherent
scatterer

Input Parameters for component Isotropic_Sqw from samples

1|<Parameter = value>, [Unit], Description

The sample component Isotropic_Sqw has been developed in order to simulate neutron
scattering from any isotropic material such as liquids, glasses (amorphous systems), poly-
mers and powders (currently, mono-crystals cannot be handled). The component treats
coherent and incoherent neutron scattering and may be used to model most materials,
including sample environments with concentric geometries. The structure and dynamics
of isotropic samples can be characterised by the dynamic structure factor S(g,w), which
determines the interaction between neutrons and the sample and therefore can be used
as a probability distribution of w-energy and g-momentum transfers. It handles coherent
and incoherent processes, both for elastic and inelastic interactions. The main input for
the component is S(g,w) tables, or powder structure files.

Usage examples of this component can be found in the

99

Neutron site/tests/Test_Isotropic_Sqw, the
Neutron site/ILL/ILL_H15_IN6 and the ILL_TOF_Env instruments from the mcgui.

From McStas 2.4 we have decided to include the earlier version of Isotropic_Sqw from
the McStas 2.0 under the name of Isotropic_Sqw_legacy, since some users reported that
release being in better agreement with experiments. Note however that issues were
corrected since 2.0 and fixed in today’s component, that on the other hand exhibits
other issues in terms of multiple scattering etc. We will try to rectify the problems
during 2017.

8.7.1. Neutron interaction with matter - overview

When a neutron enters a material, according to usual models, it ’sees’ atoms as disks
with a surface equal to the total cross section of the material o4;. The latter includes
absorption, coherent and incoherent contributions, which all depend on the incoming
neutron energy. The transmission probability follows an exponential decay law account-
ing for the total cross section.

For the neutron which is not transmitted, we select a scattering position along the
path, taking into account the secondary extinction and absorption probability. In this
process, the neutron is considered to be a particle or an attenuated wave.

Once a scattering position has been assigned, the neutron interacts with a material
excitation. Here we turn to the wave description of the neutron, which interacts with the
whole sample volume. The distribution of excitations, which determines their relative
intensity in the scattered beam, is simply the dynamic structure factor - or scattering
law - S(gq,w). We shall build probability distributions from the scattering law in order to
improve the efficiency of the method by favoring the (¢,w) choice towards high S(q,w)
regions.

The neutron leaves the scattering point when a suitable (¢, w) choice has been found
to satisfy the conservation laws. The method is iterated until the neutron leaves the
volume of the material, therefore allowing multiple scattering contributions, which will
be considered in more details below.

No experimental method makes it possible to accurately measure the multiple scat-
tering contribution, even though it can become significant at low ¢ transfers (below the
first diffraction maximum), where the single scattering coherent signal is weak in most
materials. This is why attemps have been made to reduce the multiple scattering con-
tribution by partitioning the sample with absorbing layers. However, this is not always
applicable thus makiong the simulation approach very valuable.

The method presented here for handling neutron interaction with isotropic materials
is similar in many respects to the earlier MSC [FMW72|, Discus |[Johrc] and MSCAT
[Cop74] methods, but the implementation presented here is part of a more general treat-
ment of a sample in an instrument.

100

8.7.2. Theoretical side
Pair correlation function g(r) and Dynamic structure factor S(q,w)

In the following, we consider an isotropic medium irradiated with a cold or thermal neu-
tron beam. We ignore the possible thermal fission events and assume that the incoming
neutron energy does not correspond to a Breit-Wigner resonance in the material. Fur-
thermore, we do not take into account quantum effects in the material, nor refraction
and primary extinction.

Following Squires [Squ78], the experimental counterpart of the scattering law S(g,w) is
the neutron double differential scattering cross section for both coherent and incoherent
processes:

d*c o kg
dQE; — 4m k;

NS(q,w) (8.44)

which describes the amount of neutrons scattered per unit solid angle df) and per unit
final energy dEy. In this equation, N = pV is the number of atoms in the scatter-
ing volume V' with atomic number density p, Ef, E;, ky, k; are the kinetic energy and
wavevectors of final and initial states respectively, o is the bound atom scattering cross-
section, €) is the solid angle and ¢,w are the wave-vector and energy transfer at the
sample. In practice, the double differential cross section is a linear combinaison of the
coherent and incoherent parts as:

US(‘L w) = Ucthcoh((L w) + UincSinc(Qu w) (845)

where the subscripts coh and inc stand for the coherent and incoherent contributions
respectively.
We define its norm on a selected ¢ range:

5| = / / S(q, w)dqdeo. (8.46)

The norm lim, . |S| >~ ¢ for large g values, and can only be defined on a restricted g
range.

Some easily measureable coherent quantities in a liquid are the static pair correlation
function g(r) and the structure factor S(q), defined as:

N
po) = o SN+ 7) (8.47

i=1 j£i
S@ = / S(q, w)dw (8.48)
= 1+49p /V [g(F) — 1€ dF (8.49)

= 1+ p/ [g(r) — 1]M4m"2dr in isotropic materials. (8.50)
0 qr

101

The latter expression, in isotropic materials, may be Fourier transformed as:

00 .
g(r) —1= 27r12p/0 ¢*[S(q) - 1]‘%7;(;]7“)@ (8.51)
Both g(r) and S(gq) converge to unity for large r and ¢ values respectively, and they
are representative of the atoms spatial distribution. In a liquid limg— S(q) = pkTxT
where x1 = (%)VJ‘ is the compressibility [Ege67; [FBS06]. In perfect gases, S(q) = 1 for
all g. These quantities are obtained experimentally from diffractometers. In principle,
Sinc(q) = 1 in all materials, but a ¢ dependence is rather usual, partly due to the
Debye-Waller factor e=), Anyway, Sinc(q) converges to unity at high q.

The static pair correlation function g(r) is the probability to find a neighbouring atom
at a given distance (unitless). Since g(0) = 0, Eq. provides a useful normalisation
sum-rule for coherent S(q):

(o9}
/ ¢*[S(q) — 1]dg = —2n?%p for coherent contribution. (8.52)
0

This means that the integrated oscillations (around 1) of S, (g) are directly related
to the density of the material p. In practice, the function S(g) is often known on a
restricted range ¢ € [0, ¢maz], due to either limitations in the sample molecular dynamics
simulation, or the measurement itself. In first approximation we consider that Eq.
can be applied in this range, i.e. we neglect the large ¢ contributions provided S(q) — 1
converges faster than 1/¢?. This is usually true after 2-3 oscillations of S(q) in liquids.
Then, in isotropic liquid-like materials, Eq. provides a normalisation sum-rule for
S.

8.7.3. Theoretical side - scattering in the sample

The Eq. controls the scattering in the whole sample volume. Its implementation in
a propagative Monte Carlo neutron code such as McStas can be summarised as follows:

1. Compute the propagation path length in the material by geometrical intersections
between the neutron trajectory and the sample volume.

2. Evaluate the total cross section from the integration of the scattering law over the
accessible dynamical range (Section [8.7.3)).

3. Use the total cross section to determine the probability of interaction for each
neutron along the path length, and select a scattering position.

4. Weight neutron interaction with the absorption probability and select the type of
interaction (coherent or incoherent).

5. Select the wave vector and energy transfer from the dynamic structure factor
S(gq,w) used as a probability distribution (Section [8.7.3). Apply the detailed bal-

ance.

102

6. Check whether selection rules can be solved (Section [8.7.3)). If they cannot, repeat

(5)-

This procedure is iterated until the neutron leaves the sample. We shall now detail the
key steps of this implementation.

Evaluating the cross sections and interaction probability

Following Sears [SeaT75|, the total scattering cross section for incoming neutrons with

initial energy FE; is
No ky
dQdE; = — —S dQdE 8.53
//deEf I~ ar // 2 (4w)d0dEy (8.53)

where the integration runs over the entire space and all final neutron energies. As
the dynamic structure factor is defined in the ¢,w space, the integration requires a
variable change. Using the momentum conservation law and the solid angle relation
Q = 2m(1 — cosh), were 6 is the solid angle opening, we draw:

0S(q,w)q
=N 2 2 dgdw 8.54
/ / C2k2 (8:54)

This integration runs over the whole accessible ¢, w dynamical range for each incoming
neutron. In practice, the knowledge of the dynamic structure factor is defined over a lim-
ited area with ¢ € [Gmin, Gmaz) and w € [Wimin, Wmaz] Which is constrained by the method
for obtaining S(gq,w), i.e. from previous experiments, molecular dynamics simulations,
and analytical models. It is desirable that this area be as large as possible, starting
from O for both ranges. If we use wmin — 0, Gmin — 0, Wmaz > 4FE; and Gmaee > 2k;,
we completely describe all scattering processes for incoming neutrons with wavevector
k; [FMWT72].

This means that in order to correctly estimate the total intensity and multiple scat-
tering, the knowledge of S(¢,w) must be wider (at least twice in ¢, as stated previously)
than the measurable range in the corresponding experiment. As a side effect, a self con-
sistent iterative method for finding the true scattering law from the measurement itself
is not theorically feasible, except for providing crude approximations. However, that
measured dynamic structure factor may be used to estimate the multiple scattering for
a further measurement using longer wavelength neutrons. In that case, extrapolating the
scattering law beyond the accessible measurement ranges might improve substantially
the accuracy of the method, but this discussion is beyond the scope of this paper.

Consequently, limiting the ¢ integration in Eq. to the maximum momentum
transfer for elastic processes 2k;, we write the total scattering cross section as

N

252 qoS(q)dg. (8.55)

os(E;) ~

Using Eq. it is possible to define similar expressions for the coherent and incoherent
terms ocon(E;) and oi,.(E;) respectively. These integrated cross sections are usually

103

quite different from the tabulated values [DLO3| since the latter are bound scattering
cross sections.

Except for a few materials with absorption resonances in the cold-thermal energy
range, the absorption cross section for an incoming neutron of velocity v; = \/2E;/m,

: : N\ 2200 2200m/s 2200
where m is the neutron mass, is computed as o4ps(F;) = 05;, WS o

obtained from the literature [DLO3].
We now determine the total cross section accounting for both scattering and absorption

where o is

tot(Ei) = Taps (E;) + 05(Ei). (8.56)

The neutron trajectory intersection with the sample geometry provides the total path
length in the sample d¢zi; to the exit. Defining the linear attenuation u(E;) = poior(Ei),
the probability that the neutron event is transmitted along path dey; is e #(Ei)deait

If the neutron event is transmitted, it leaves the sample. In previous Monte Carlo
codes such as DISCUSS [Johrc], MSC [FMW72] and MSCAT [Cop74], each neutron
event is forced to scatter to the detector area in order to improve the sample scattering
simulation statistics and reduce the computing time. The corresponding instrument
model is limited to a neutron event source, a sample and a detector. It is equaly possible
in the current implementation to ’force’ neutron events to scatter by applying a correction
factor mp = 1 — e #(Fideait to the neutron statistical weight. However, the MeStas
instrument model is often build from a large sequence of components. Eventhough the
instrument description starts as well with a neutron event source, more than one sample
may be encountered in the course of the neutron propagation and multiple detectors may
be positioned anywhere in space, as well as other instrument components (e.g. neutron
optics). This implies that neutron events scattered from a sample volume should not
focus to a single area. Indeed, transmitted events may reach other scattering materials
and it is not desirable to force all neutron events to scatter. The correction factor g
is then not applied, and neutron events can be transmitted through the sample volume.
The simulation efficiency for the scattering then drops significantly, but enables to model
much more complex arrangements such as concentric sample environments, magnets and
monochromator mechanical parts, and neutron filters.

If the neutron is not transmitted, the neutron statistical weight is multiplied by a
factor
Og (El)
Ttot (Es)
to account for the fraction of absorbed neutrons along the path, and we may in the

following treat the event as a scattering event. Additionally, the type of interaction
(coherent or incoherent) is chosen randomly with fractions o.on(F;) and oip(E;).

m = (8.57)

The position of the neutron scattering event along the neutron trajectory length de.;t
is determined by [MPC77; \Johrc]

ds = - (1EZ-) In(1 — &[1 — e #(E)devir]) (8.58)

104

where ¢ is a random number in [0,1]. This expression takes into account secondary
extinction, originating from the decrease of the beam intensity through the sample (self
shielding).

Choosing the ¢ and w transfer from S(q,w)

The choice of the (¢,w) wavevector-energy transfer pair could be done randomly, as in
the first event of the second order scattering evaluation in DISCUS [Johrc|, but it is
somewhat inefficient except for materials showing a broad quasi-elastic signal. As the
scattering originates from structural peaks and excitations in the material S(q,w), it is
usual [Cop74] to adopt an importance sampling scheme by focusing the (¢,w) choice to
areas where the intensity of S(¢,w) is high. In practice, this means that the neutron event
should scatter preferably on e.g. Bragg peaks, quasielastic contribution and phonons.

The main idea to implement the scattering from S(g,w) is to cast two consecutive
Monte Carlo choices, using probability distribution built from the dynamic structure
factor. We define first the probability P, (w) as the unweighted fraction of modes whose
energy lies between w and w + dw

dmax
qS(q,w)dq
P, (w)dw = 22 ,
(w) 5|

(8.59)

where |S| = [[S(¢g,w)dgdw is the norm of S(¢g,w) in the available dynamical range
q € [@min, @maz] and W € [Wmin, Wmaz]. The probability P, (w) is normalised to unity,
[P,(w)dw = 1, and is a probability distribution of mode energies in the material. We
then choose randomly an energy transfer w from this distribution.

Similarly, in order to focus the wavevector transfer choice, we define the probability
distribution of wavevector P,(q | w) for the selected energy transfer lying between w and

w ~+ dw S(q.0)
_ qS(q,w

from which we choose randomly a wavevector transfer ¢, knowing the energy transfer w.
These two probability distributions extracted from S(gq,w) are shown in Fig. for a
model S(g,w) function built from the -*He elementary excitation (Data from Donnelly).

Then a selection between energy gain and loss is performed with the detailed balance
ratio e ™/k5T In the case of Stokes processes, the neutron can not loose more than
its own energy to the sample dynamics, so that hw < FE;. This condition breaks the
symmetry between up-scattering and down-scattering.

(8.60)

Solving selection rules and choosing the scattered wave vector

The next step is to check that the conservation laws

2m

q = ki—Fk (8.62)

hw = E;—Ep=——(ki —k}) (8.61)

105

g,(®) S(q,0) g (qlo)

Energy transfer (meV)

s
o
E
8
%
¢
g
>
4
§
H
&

|

1 [06 04 02 0 5 1 15 225 : 5 1 15 2 25 3 35 4
- Momentum transfer (A) Momenturn transfer (™)

Figure 8.7.: Centre: Model of dynamic structure factor S(g,w) for 1-*He ; left: prob-
ability distribution g, (horizontal axis) of energy transfers (vertical axis,
density of states) ; right : probability distribution gq(w) (vertical axis) of
momentum transfers (horizontal axis) for a given energy transfer fiw ~ 1.1
meV.

can be satisfied. These conditions are closely related to the method for selecting the
outgoing wave vector direction.

When the final wave vector has to be computed, the quantities Ei, fw and ¢ = |q] are
known. We solve the energy conservation law Eq. and we select randomly k¢ as
one of the two roots.

The scattering angle 6 from the initial k; direction is determined from the momentum
conservation law cos(6) = (k? + l{:JQc — ¢%)/(2k;ky), which defines a scattering cone. We
then choose randomly a direction on the cone.

If the selection rules can not be verified (namely |cos(f)| > 1), a new (g,w) random
choice is performed (see Section . It might appear inefficient to select the energy
and momentum tranfers first and check the selection rules afterwards. However, in
practice, the number of iterations to actually scatter on a high probability process and
satisfy these rules is limited, usually below 10. Moreover, as these two steps are simple,
the whole process requires a limited number of computer operations.

As mentioned in Sectionm previous multiple scattering estimation codes [FMWT72;
Cop74} Johrc| force the outgoing neutron event to come into the detector area and time
window, thus improving dramatically the code efficiency. This choice sets the measurable
energy and momentum transfers for the last scattering event in the sample, so that the
choice of the scattering excitation actually requires a more complex sampling mechanism
for the dynamic structure factor. As the present implementation makes no assumption
on the simulated instrument part which is behind the sample, we can not apply this
method. Consequently, the efficiency of the sample scattering code is certainly lower
than previous codes, but on the other hand it does not depend on the type of instrument
simulation. In particular, it may be used to model any material in the course of the

106

neutron propagation along the instrument model (filters, mechanical parts, samples,
shields, radiation protections).

Once the scattering probability and position, the energy and momentum transfers
and the neutron momentum after scattering have all been defined, the whole process is
iterated until the neutron is transmitted and exits the sample volume.

Extension to powder elastic scattering

In principle, the component can work in purely elastic mode if only the w = 0 column
is available in S. Anyway, in the diffractionists world, people do not usually define
scattering with S(q) (Eq. , but through the scattering vector 7, multiplicity z(7)
(for powders), and | F2| structure factors including Debye-Waller factors, as in Eq. [8.18

When doing diffraction, and neglecting inelastic contribution as first approximation,

we may integrate Eq. keeping k; = ky.

do > d2acoh NUCOh
dQ - dby = co .
<dQ>coh.el. (‘QD /0 deEf f 47 S h(q) (8 63)

2 3
= NS b - @) from Bq. BT (8.60
0 T

with Vo = 1/p being the volume of a lattice unit cell. Then we come to the formal
equivalence, in the powder case [Squ78| (integration over Debye-Scherrer cones):

Seon(q) = —2 @|Fq|2 in a powder. (8.65)

B 2Gcoh q

for each lattice Bragg peak wave vector ¢. The normalisation rule Eq. can
not usually be applied for powders, as the S(q) is a set of Dirac peaks for which the
[42S(g)dq is difficult to compute, and S(g) does not converge to unity for large . Each
F? Dirac contribution may be broaden when specifiying a diffraction peak width.

Of course, the component PowderN (see section can handle powder samples ef-
ficiently (faster, better accuracy), but does not take into account multiple scattering,
nor secondary extinction (which is significant for materials with large absorption cross
sections). On the other side, the current Isotropic_.Sqw component assumes a powder
packing factor of 1 (massive sample). To change into a lower packing factor, use a lower
powder density.

Important remarks and limitations

Since the choice of the interaction type, we know that the neutron must scatter, with
an appropriate ky outgoing wave vector. If any of the choices in the method fails:

1. the two roots k7 and k; are imaginary, which means that conservation laws can
not be satisfied and for instance the selected energy transfer is higher than the
incoming neutron energy

107

2. the radius of the target circle is imaginary, that is |cos(0)| > 1.

then a new (q,w) set is drawn, and the process is iterated until success or - at last -
removal of the neutron event. These latter absorptions are then reported at the end of
the simulation, as it never occurs in reality - neutrons that scatter do find a suitable
(q,w) set.

The S(q,w) data sets should be as wide a possible in ¢ and w range, else scattering con-
ditions will be limited by the reduced data set (specially multiple scattering estimates).
On the other hand, when ¢ and w ranges are too large, some Monte Carlo choices lead
to scattering temptatives in non useful regions of S, which reduces dramatically the
algorithm efficiency.

The best settings are:

1. to have the widest ¢ and w range for S(q,w) data sets,
2. to either set wmax and gmax to the maximum scatterable energy and wavevectors,

3. or alternatively request the automatic range optimisation by setting parameter
auto_qw=1. This is recommended, but may sometimes miss a few neutrons if the
q,w beam range has been guessed too small.

Focusing the ¢ and w range (e.g. with ’auto_qw=1"), to the one being able to scatter
the incoming beam, when using the component does improve significantly the speed
of the computation. Additionally, if you restrict the scattering to the first order only
(parameter ’order=1"), then you may specify the angular vertical extension d¢ of the
scattering area to gain optimised focusing. This option does not apply when handling
multiple scattering (which emits in 47 many times before exiting the sample).

A bilinear interpolation for the ¢,w determination is used to improve the accuracy on
the scattered intensity, but it may be unactivated when setting parameter interpolate=0.
This will often result in a discrete ¢, w sampling.

As indicated in the previous section, the Isotropic_.Sqw component is not as efficient
as PowderN for powder single scattering, but handles scattering processes in a more
accurate way (secondary extinction, multiple scattering).

8.7.4. The implementation
Geometry

The geometry for the component may be box, cylinder and sphere shaped, either filled
or hollow. Relevant parameters for this purpose are as follow:

e box: dimensions are Tydih X Yheight X Zdepth-
e box, hollow: idem, and the side wall thickness is set with thickness.
e cylinder: dimensions are r for the radius and ypeignt for the height.

e cylinder, hollow: idem, and hollow part is set with thickness.

108

Parameter type | meaning

Sqw_coh string | Coherent scattering data file name. Use 0, NULL or
"7 to disable

Sqw_inc string | Incoherent scattering data file name. Use 0, NULL
or ”” to scatter isotropically (Vanadium like)

sigma_coh [barns] | Coherent scattering cross-section. -1 to disable

sigma_inc [barns] | Incoherent scattering cross-section. -1 to disable

sigma_abs [barns| | Absorption cross-section. -1 to disable

V_rho [A=3] | atomic number density. May also be specified with
molar weight weight in [g/mol] and material density
in [g/cm?]

T [K] | Temperature. 0 disables detailed balance

xwidth [m]

vheight [m] | dimensions of a box shaped geometry

zdepth [m]

radius_o [m] | dimensions of a cylinder shaped geometry

radius_i [m] | sphere geometry if radius_i=0

thickness [m] | thickness of hollow shape

auto_qw boolean | Automatically optimise probability tables during
simulation

auto_norm scalar | Normalize S(¢q,w) when -1, use raw data when 0, mul-
tiply S by given value when positive

order integer | Limit multiple scattering up to given order. 0 means
all orders

concentric boolean | Enables to ’enter’ inside concentric hollow geometries

Table 8.2.: Main Isotropic_Sqw component parameters

109

=W N

e sphere: dimension is r for the radius.
e sphere, hollow: idem, and hollow part is set with thickness.

The AT position corresponds to the centre of the sample.
Hollow shapes are particularly useful to model complex sample environments. Refer
to the dedicated section below for more details on this topic.

Dynamical structure factor

The material behaviour is specified through the total scattering cross-sections oeop, Tine,
Oabs, and the S(q,w) data files.

If you are lucky enough to have access to separated coherent and incoherent contri-
butions (e.g. from material simulation), simply set Sqw_coh and Sqw_inc parameter to
the files names. If on the other hand you have access to a global data set containing
incoherent scattering as well (e.g. the result of a previous experiment), use Sqw_coh
parameter, set the o.,;, parameter to the sum of both contributions o..; + 0ine, and set
oine = —1. This way we only use one of the two implemented scattering channels. Such
global data sets may originate from previous experiments, as far as you have applied all
known corrections (multiple scattering, geometry, ...).

In any case, the accuracy of the S(g,w) data limits the ¢ and w resolution of the
simulation, eventhough a bilinear interpolation is performed in order to smooth binning.
The sampling of data files should then be as thin as possible.

If the Sqw_inc parameter is left unset but the o;,. is not zero, an isotropic incoherent
elastic scattering is used, just like the V_sample component (see section [8.1]).

Anyway, as explained below, it is also possible to simulate the elastic scattering from
a powder file (see below).

File formats: S(q,w) inelastic scattering

The format of the data files is free text, consisting of three numerical blocks, separated
by empty lines or comments, in the following order

1. A vector of length m containing wavevector ¢ values, in A~1.
2. A vector of length n containing energy w values, in meV.
3. A matrix of size m rows by n columns, of S(q,w) values, in meV~1.

Any line beginning with any character of #; /% is considered to be a comment, and lines
which can not be read as vectors/matrices are ignored.

The file header may optionally contain parameter settings for the material, as com-
ments, with keywords as in the following example:

#V_0 35 cell volume [Angs”3]

#V_rho 0.07 atom number density [at/Angs”3]
#sigma_abs 5 absorption cross section [barns]
#sigma_inc 4.8 incoherent cross section [barns]

110

© 00 O ot

1

1

1
2

—_

W N

1
2

#sigma_coh 1 coherent cross section [barns]
#Temperature 10 for detailed balance [K]
#density 1 material density [g/cm”3]
#weight 18 material molar weight [g/mol]
#nb_atoms 6 number of atoms per unit cell

Some sqw data files are included in the McStas distribution data directory, and they
contain material parameter settings in their header, so that you may use:

Isotropic_-Sqw(<geometry parameters>, Sqw_coh="He4_liq_coh .sqw”, T=4) I

Example files are listed as *.sqw files in directory MCSTAS/data. A table of S(q,w)
data files for a few liquids are listed in Table (page .

File formats: S(q) liquids

This file format provides a mean to import directly an S(q) data set, when setting
parameters:

powder_format=qSq I

The "Sqw_coh’ (or ’Sqw_inc’) file should contains a single numerical block, which column
assignment is defaulted as ¢ and S(g) being the first and second column respectively.
This may be overridden from the file header with '#column’ keywords, as in the example:

#column_q 2
#column_Sq 1

Such files can only handle elastic scattering.

File formats: powder structures (LAZY, Fullprof, Crystallographica)

Data files as used by the component PowderN may also be read. Data files of type lau
and laz in the McStas distribution data directory are self-documented in their header.
They do not need any additional parameters to be used, as in the example:

Isotropic_.Sqw(<geometry parameters>, Sqw_coh="Al.laz”)

Other column-based file formats may also be imported e.g. with parameters such as:

powder_format=Crystallographica
powder_format=Fullprof
powder_Dd =0

powder DW =1

The last two parameters may as well be specified in the data file header with lines:
#Debye_Waller 1
#Delta_d /d le—3

111

0~ O ULk W N~

The powder description is then translated into S(gq) by using Eq. . In this case,
the density p = n/V} is the number of atoms in the inverse volume of the unit cell.

As the component builds an S(q) from the powder structure description, the accuracy
of the Isotropic_Sqw component is limited by the binning during that conversion. This
is usually enough to describe sample environments including powders (aluminium, cop-
per, ...), but it is recommended to rather use PowderN for faster and accurate powder
diffraction, eventthough this latter does not implement multiple scattering.

Such files can only handle elastic scattering. A list of common powder definition files

is available in Table (page [15)).

Concentric geometries, sample environment

The component has been designed in a way which enables to describe complex imbricated
set-ups, i.e. what you need to simulate sample environments. To do so, one has first
to use hollow shapes, then keep in mind that each surrounding geometry should be
first declared before the central position (usually the sample) with the concentric=1
parameter, but also duplicated (with an other instance name) at a symmetric position
with regards to the centre as in the example (shown in Fig. :

COMPONENT s_in=Isotropic-Sqw (
thickness=0.001, radius=0.02, yheight=0.015,
Sqw_coh="Al.laz”, concentric=1)

AT (0,0,1) RELATIVE a

COMPONENT sample=Isotropic_Sqw (
xwidth=0.01, yheight=0.01, zdepth=0.01,
Sqw_coh="Rb_lig-coh .sqw”)

AT (0,0,1) RELATIVE a

COMPONENT' s_out=Isotropic-Sqw (
thickness=0.001, radius=0.02, yheight=0.015,
Sqw_coh="Al.laz")

AT (0,0,1) RELATIVE a

Central component may be of any type, not specifically an Isotropic_Sqw instance. It
could be for instance a Single_crystal or a PowderN. In principle, the number of sur-
rounding shells is not restricted. The only restriction is that neutrons that scatter (in
47) can not come back in the instrument description, so that some of the multiple scat-
tering events are lost. Namely, in the previous example, neutrons scattered by the outer
wall of the cryostat s_out can not come back to the sample or to the other cryostat wall
s_in. As these neutrons have usually few chances to reach the rest of the simulation,
we expect that the approximation is fair.

8.7.5. Validation

For constant incoherent scattering mode, V_sample, PowderN, Single_crystal and Isotropic_Sqw

produce equivalent results, eventhough the two later are more accurate (geometry, mul-
tiple scattering). Execution times are equivalent.

112

Compared with the PowderN component, the S(g) method is twice slower in compu-
tation time, and intensity is usually lower by typically 20 % (depending on scattering
cross sections), the difference arising from multiple scattering and secondary extinction
(not handled in PowderN). The PowderN component is intrinsically more accurate in
q as each Bragg peak is handled separately as an exact Dirac peak, with optional Ag
spreading. In Isotropic_Sqw, an approximated S(q) table is built from the F? data, and
is coarser. Still, differences in the diffraction pattern are limited.

The Isotropic_Sqw component has been benchmarked against real experiment for lig-
uid Rubidium (Copley, 1974) and liquid Cesium (Bodensteiner and Dorner, 1989), and
the agreement is excellent.

The Test_Isotropic_Sqw test/example instrument exists in the distribution for this
component.

113

0. Monitors and detectors

In real neutron experiments, detectors and monitors play quite different roles. One wants
the detectors to be as efficient as possible, counting all neutrons (absorbing them in the
process), while the monitors measure the intensity of the incoming beam, and must
as such be almost transparent, interacting only with (roughly) 0.1-1% of the neutrons
passing by. In computer simulations, it is of course possible to detect every neutron ray
without absorbing it or disturbing any of its parameters. Hence, the two components
have very similar functions in the simulations, and we do not distinguish between them.
For simplicity, they are from here on just called monitors.

Another important difference between computer simulations and real experiments is
that one may allow the monitor to be sensitive to any neutron property, as e.g. direction,
energy, and divergence, in addition to what is found in real-world detectors (space and
time). One may, in fact, let the monitor record correlations between these properties,
as seen for example in the divergence/position sensitive monitor in section

When a monitor detects a neutron ray, a number counting variable is incremented:
n; = n;—1+1. In addition, the neutron weight p; is added to the weight counting variable:
I; = I;,_1 + p;, and the second moment of the weight is updated: Ms; = M ;1 +p12. As
also discussed chapter 2] after a simulation of N rays the detected intensity (in units of

neutrons/sec.) is Iy, while the estimated errorbar is /M2 ,.

Many different monitor components have been developed for McStas, but we have
decided to support only the most important ones. One example of the monitors we have
omitted is the single monitor, Monitor, that measures just one number (with errorbars)
per simulation. This effect is mirrored by any of the 1- or 2-dimensional components we
support, e.g. the PSD_monitor. In case additional functionality of monitors is required,
the few code lines of existing monitors can easily be modified.

However, the ultimate solution is the use of the “Swiss army knife” of monitors, Mon-
itor_nD, that can face almost any simulation requirement, but will prove challenging
for users who like to perform own modifications.

114

9.1. TOF _monitor: The time-of-flight monitor

Input Parameters for component TOF_monitor from monitors

1|<Parameter = value>, [Unit], Description

The component TOF _monitor has a rectangular opening in the (z,y) plane, given
by the x and y parameters, like for Slit. The neutron ray is propagated to the plane of
the monitor by the kernel call PROP_Z0. A neutron ray is counted if it passes within
the rectangular opening given by the x and y limits.

Special about TOF _monitor is that it is sensitive to the arrival time, ¢, of the neutron
ray. Like in a real time-of-flight detector, the time dimension is binned into small time
intervals. Hence this monitor maintains a one-dimensional histogram of counts. The
Nehan time intervals begin at ¢y and end at 1 (alternatively, the interval length is specified
by At). As usual in time-of-flight analysis, all times are given in units of us.

The output parameters from TOF _monitor are the three count numbers, N, I, and
My for the total counts in the monitor. In addition, a file, filename, is produced with
a list of the same three data divided in different TOF bins. This file can be read and
plotted by the mcplot tool; see the System Manual.

9.2. TOF2E_monitor: A time-of-flight monitor with simple
energy analysis

Input Parameters for component TOF2E_monitor from monitors

1|<Parameter = value>, [Unit], Description

The component TOF2E_monitor resembles TOF _monitor to a very large extent.
Only this monitor converts the neutron flight time to energy - as would be done in an
experiment. The apparent neutron energy, Fapp is calculated from the apparent velocity,
given by

Liignt
Vapp = t _lgto > (91)

where the time offset, tg defaults to zero. E,p, is binned in nchan bins between Epin
and Emax (in meV).

The output parameters from TOF2E_monitor are the total counts, and a file with
1-dimensional data vs. E,pp,, similar to TOF _monitor.

9.3. E_monitor: The energy-sensitive monitor

Input Parameters for component E_monitor from monitors

1|<Parameter = value>, [Unit], Description I

115

The component E_monitor resembles TOF _monitor to a very large extent. Only
this monitor is sensitive to the neutron energy, which in binned in nFE bins between Ei,
and Fpyax (in meV).

The output parameters from E_monitor are the total counts, and a file with 1-
dimensional data vs. E, similar to TOF _monitor.

9.4. L monitor: The wavelength sensitive monitor

Input Parameters for component L_monitor from monitors

1|<Parameter = value>, [Unit], Description

The component L_monitor is very similar to TOF_monitor and E_monitor. This
component is just sensitive to the neutron wavelength. The wavelength spectrum is
output in a one-dimensional histogram. between Ay and Apax (measured in A).

As for the two other 1-dimensional monitors, this component outputs the total counts
and a file with the histogram.

09.5. PSD _monitor: The PSD monitor

Input Parameters for component PSD_monitor from monitors

1|<Parameter = value>, [Unit], Description

The component PSD_monitor resembles other monitors, e.g. TOF_Monitor, and
also propagates the neutron ray to the detector surface in the (x,y)-plane, where the
detector window is set by the x and y input coordinates. The PSD monitor, though,
is not sensitive to the arrival time of the neutron ray, but rather to its position. The
rectangular monitor window, given by the x and y limits is divided into n, x n, pixels.

The output from PSD_monitor is the integrated counts, n, I, M>, as well as three
two-dimensional arrays of counts: n(z,y), I(z,y), Ma(z,y). The arrays are written to a
file, filename, and can be read e.g. by the tool mcplot, see the system manual.

9.6. Divergence monitor: A divergence sensitive monitor

Input Parameters for component Divergence_monitor from monitors

1|<Parameter = value>, [Unit], Description
The component Divergence_monitor is a two-dimensional monitor, which resem-

bles PSD _Monitor. As for this component, the detector window is set by the x and
y input coordinates. Divergence_ monitor is sensitive to the neutron divergence,

116

defined by n, = tan™!(v,/v,) and 7, = tan"!(v,/v,;). The neutron counts are being his-
togrammed into ny X ny, pixels. The divergence range accepted is in the vertical direction
[—7v,max; v, max], and similar for the horizontal direction.

The output from PSD _monitor is the integrated counts, n, I, Ms, as well as three
two-dimensional arrays of counts: n(nyv, nn), I (7y, M), Ma(nv, nn). The arrays are written
to a file, filename, and can be read e.g. by the tool MC _plot, see the system manual.

9.7. DivPos_monitor: A divergence and position sensitive
monitor

Input Parameters for component DivPos_monitor from monitors

l|<Parameter = value>, [Unit], Description I

DivPos_monitor is a two-dimensional monitor component, which is sensitive to both
horizontal position (z) and horizontal divergence defined by n, = tan=!(v,/v.). The
detector window is set by the x and y input coordinates.

The neutron counts are being histogrammed into n, x ny pixels. The horizontal
divergence range accepted iS [=7h max; 7h,max), and the horizontal position range is the
size of the detector.

The output from PSD_monitor is the integrated counts, n, I, My, as well as three
two-dimensional arrays of counts: n(z,ny), I(z,nn), M2(x,ny). The arrays are written
to a file and can be read e.g. by the tool mcplot, see the system manual.

This component can be used for measuring acceptance diagrams [Cus03]. PSD_monitor
can easily be changed into being sensitive to y and vertical divergence by a 90 degree
rotation around the z-axis.

117

9.8. Monitor_nD: A general Monitor for 0D/1D /2D records

Input Parameters for component Monitor_nD from monitors

1|<Parameter = value>, [Unit], Description

The component Monitor_nD is a general Monitor that may output any set of physical
parameters regarding the passing neutrons. The generated files are either a set of 1D
signals ([Intensity] vs. [Variable]), or a single 2D signal ([Intensity] vs. [Variable 1] vs.
[Variable 1]), and possibly a simple long list of selected physical parameters for each
neutron.

The input parameters for Monitor_nD are its dimensions & min, Tmax; Ymin, Ymax (il
meters) and an options string describing what to detect, and what to do with the signals,
in clear language. The Zydtn, Yneight, Zdepth May also be used to enter dimensions.

Eventhough the possibilities of Monitor_nD are numerous, its usage remains as simple
as possible, specially in the options parameter, which 'understands’ normal language.
The formatting of the options parameter is free, as long as it contains some specific
keywords, that can be sometimes followed by values. The mo or not option modifier
will revert next option. The all option can also affect a set of monitor configuration
parameters (see below).

As the usage of this component enables to monitor virtually anything, and thus the
combinations of options and parameters is infinite, we shall only present the most ba-
sic configuration. The reader should refer to the on-line component help, using e.g.
mcdoc Monitor_nD.comp.

9.8.1. The Monitor_nD geometry

The monitor shape can be selected among seven geometries:

1. (square) The default geometry is flat rectangular in (zy) plane with dimensions

Tminy Lmax Ymins, Ymax, O Lwidths Yheight-
2. (box) A rectangular box with dimensions Twidqih, Yheight: Zdepth-

3. (disk) When choosing this geometry, the detector is a flat disk in (zy) plane. The
radius is then

radius = max(abs [«'Emina Tmax) Y mins Ymax, xwidth/27 yheight/2])' (92)
4. (sphere) The detector is a sphere with the same radius as for the disk geometry.

5. (cylinder) The detector is a cylinder with revolution axis along y (vertical). The
radius in (xz) plane is

radius = max(abs [Tmin, Tmax, Twidth/2]), (9.3)
and the height along y is

height = |ymax - ymax|0ryheight- (94)

118

0~ O Uik W

= = e
=W N = O O

15

6. (banana) The same as the cylinder, but without the top/bottom caps, and on a
restricted angular range. The angular range is specified using a theta variable
limit specification in the options.

7. (previous) The detector has the shape of the previous component. This may be a
surface or a volume. In this case, the neutron is detected on previous component,
and there is not neutron propagation.

By default, the monitor is flat, rectangular. Of course, you can choose the orientation
of the Monitor_nD in the instrument description file with the usual ROTATED modifier.

For the box, sphere and cylinder, the outgoing neutrons are monitored by default, but
you can choose to monitor incoming neutron with the incoming option.

At last, the slit or absorb option will ask the component to absorb the neutrons that
do not intersect the monitor. The exclusive option word removes neutrons which are
similarly outside the monitor limits (that may be other than geometrical).

The parallel option keyword is of common use in the case where the Monitor_nD is
superposed with other components. It ensures that neutrons are detected independently
of other geometrical constrains. This is generally the case when you need e.g. to place
more than one monitor at the same place.

9.8.2. The neutron parameters that can be monitored

There are many different variables that can be monitored at the same time and position.
Some can have more than one name (e.g. energy or omega).

angle
theta longitude
phi lattitude

longitude (x/z) [for sphere and cylinder]
lattitude (y/z) [for sphere and cylinder]

kx ky kz k wavevector [Angs—1] (usually axis are
VX VY VZ V [m/s] x=horz., y=vert., z=on axis)
Xy z [m] Distance , Position
kxy vxy xy radius [m] Radial wavevector, velocity and position
t time [s] Time of Flight
energy omega [meV]
lambda wavelength [Angs]
p intensity flux [n/s] or [n/cm"2/s]
ncounts [1]
SX Sy sz [1] Spin
vdiv ydiv dy [deg vertical divergence (y)
hdiv divergence xdiv [deg horizontal divergence (x)
[
[
[

]
|
deg]| divergence from direction
]
]

as well as two other special variables

user userl will monitor the [MonName]_Vars.UserVariable{1]|2}
user2 user3 to be assigned in an other component (see below)

To tell the component what you want to monitor, just add the variable names in the
options parameter. The data will be sorted into bins cells (default is 20), between some
default limits, that can also be set by user. The auto option will automatically determine
what limits should be used to have a good sampling of signals.

119

9.8.3. Important options

Each monitoring records the flux (sum of weights p) versus the given variables, except
if the signal=<variable> word is used in the options. The c¢m2 option will ask to
normalize the flux to the monitor section surface, and the capture option uses the gold
foil integrated ’capture’ flux weightening (up to the cadmium cut-off):

0.5V
dd A
o, = / ——dA\ 9.5

0 dA A2200m/s (6:5)

The auto option is probably the most useful one: it asks the monitor to automati-
cally determine the best limits for each variable, in order to obtain the most significant
monitored histogram. This option should preceed each variable, or be located after all
variables in which case they are all affected. On the other hand, one may manually
set the limits with the 1imits=[min max] option. If no limits are set monitor_nd uses
predefined limits that usually make sense for most neutron scattering simulations. Ex-
ample: the default upper energy limit is 100 meV, but may be changed with an options
string like options="energy limits 0 200". Note that the limits also apply in list
mode (see below).

The log and abs options should be positioned before each variable to specify loga-
rithmic binning and absolute value respectively.

The borders option will monitor variables that are outside the limits. These values
are then accumulated on the ’borders’ of the signal.

9.8.4. The output files

By default, the file names will be the component name, followed by a time stamp and
automatic extensions showing what was monitored (such as MyMonitor.x). You can
also set the filename in options with the file keyword followed by the file name that you
want. The extension will then be added if the name does not contain a dot (.). Finally,
the filename parameter may also be used.

The output files format are standard 1D or 2D McStas detector files. The no file
option will inactivate monitor, and make it a single 0D monitor detecting integrated
flux and counts. The wverbose option will display the nature of the monitor, and the
names of the generated files.

The 2D output

When you ask the Monitor_nD to monitor only two variables (e.g. options = "x y”),
a single 2D file of intensity versus these two correlated variables will be created.

The 1D output

The Monitor_nD can produce a set of 1D files, one for each monitored variable, when
using 1 or more than 2 variables, or when specifying the multiple keyword option.

120

The List output

The Monitor_nD can additionally produce a list of variable values for neutrons that
pass into the monitor. This feature is additive to the 1D or 2D output. By default
only 1000 events will be recorded in the file, but you can specify for instance ” list 3000
neutrons” or ”list all neutrons”. This last option may require a lot of memory and
generate huge files. Note that the limits to the measured parameters also apply in
this mode. To exemplify, a monitor nd instance with the option string "list all v"
will only record those neutrons which have a velocity below 100000 m/s, whereas an
instance with the option string "1list all vx vy vz 0 2000" will record all neutrons
with |vg,vy| < 100 m/s and 0 < v, < 2000 m/s. Thus, in this latter case, any neutron
travelling in the negative z-direction will be disregarded.

9.8.5. Monitor equivalences

In the following table we show how the Monitor_nD may substitute any other McStas
monitor.

9.8.6. Usage examples

°
1 |OCOMPONENT MyMonitor = Monitor_nD (
2 xmin = —0.1, xmax = 0.1,

3 ymin = —0.1, ymax = 0.1,

4

options = ”energy auto limits”)

will monitor the neutron energy in a single 1D file (a kind of E_monitor)

e options = "banana, theta limits=[10,130], bins=120, y bins=30"
is a theta/height banana detector.

e options = "banana, theta limits=[10,130], auto time"
is a theta/time-of-flight banana detector.

e options="x bins=30 limits=[-0.05 0.05] ; y"
will set the monitor to look at x and y. For y, default bins (20) and limits values
(monitor dimensions) are used.

e options="x y, auto, all bins=30"
will determine itself the required limits for x and y.

e options="multiple x bins=30, y limits=[-0.05 0.05], all auto"
will monitor the neutron x and y in two 1D files.

e options="x y z kx ky kz, all auto"
will monitor each of theses variables in six 1D files.

e options="x y z kx ky kz, list all, all auto"
will monitor all theses neutron variables in one long list, one row per neutron event.

121

McStas monitor

Monitor_nD equivalent

Divergence_monitor
DivLambda_monitor
DivPos_monitor

E_monitor
EPSD _monitor

Hdiv_monitor
L_monitor
Monitor_4PI
Monitor
PSDcyl_monitor

PSDlin_monitor

PSD _monitor_4PI
PSD_monitor

TOF _cylPSD_monitor
TOFLambda_monitor

TOFlog_mon
TOF_monitor

options="dx bins=ndiv limits=[—a/2a/2], lambda
bins=nlam limits=[A\g 1] file=file”

options="dx bins=nh limits=[—haz/2hmaz/2], dy bins=nv
limits=[—vmaz/2Vmaz/2]” filename=file

options="dx bins=ndiv limits=[—a/2a/2], x bins=npos”
TMIN=Tin TMAT=Lmaz

options="energy bins=nchan limits=[F,in Emaz|”
options="energy bins=ng limits=[EinFmaz], X bins=nz”
TMIN=Lpin, TMAT=Lmaz
options="dx bins=nh
name=file
options="lambda bins=nh limits=[—\naz/2 \maz/2]” file-
name=file

options="sphere”

options="1inactivate”

options="theta bins=nr,y bins=ny, cylinder” filename=file
yheight=height xwidth=2*radius

options="x bins=nz” TMIN==Tmin TMOT=Tmazr YMIN=Ymin
YMAT=Ymaz filename=file

options="theta y, sphere”

options="x bins=nz, y bins=ny” rmin==z.,;, TMAT=Tmaz
YMIN=Ymin YMAL=Ymaz filename=file

options="theta bins=ng, time bins=nt limits=[ty, 1], cylin-
der” filename=file yheight=height rwidth=2*radius
options="lambda bins=n) limits=[\¢ A;], time bins=nt
limits=[to, t1]” filename=file

options="1log time bins=nt limits=|to, t;]”

options="time bins=nt limits=[to, t1]”

hmltS:[—hma;p/2hmax/2]” ﬁle-

Table 9.1.: Using Monitor_.nD in place of other components.

All limits specifications

may be advantageously replaced by an auto word preceeding each monitored
variable. Not all file and dimension specifications are indicated (e.g. filename,

Xmin, xmax, ymin, ymax).

122

U W N =

e options="multiple x y z kx ky kz, and list 2000, all auto"
will monitor all theses neutron variables in one list of 2000 events and in six 1D
files.

e options="signal=energy, x y"
is a PSD monitor recording the mean energy of the beam as a function of z and y.

9.8.7. Monitoring user variables

There are two ways to monitor any quantity with Monitor_.nD. This may be e.g. the
number of neutron bounces in a guide, or the wavevector and energy transfer at a sample.
The only requirement is to define the user1 (and optionally user2,user3) variables of
a given Monitor_nD instance.

Directly setting the user variables (simple)

The first method uses directly the userl and usernamel component parameters to
directly transfer the value and label, such as in the following example:

TRACE

COMPONENT UserMonitor = Monitor_nD (

userl = log(t), usernamel="Log(time)”,
options ="auto userl”)

The values to assign to user2 and user3 must be global instrument variables, or a
component output variables as in user1=MC_GETPAR(some_comp, outpar). Similarly,
the user2,user3 and username?2,username3 parameters may be used to control the
second and third user variable, to produce eventually 2D /3D user variable correlation
data and custom event lists.

Indirectly setting the user variables (only for professionals)

It is possible to control the user variables of a given Monitor_nD instance anywhere in
the instrument description. This method requires more coding, but has the advantage
that a variable may be defined to store the result of a computation locally, and then
transfer it into the UserMonitor, all fitting in an EXTEND block.

This is performed in a 4 steps process:

1. Declare that you intend to monitor user variables in a Monitor_nD instance (defined
in TRACE):

DECLARE
% (...)

%include ”monitor.-nd—lib”
MONNDDECLARE(UserMonitor); // will monitor custom things in
UserMonitor

=W N =

%}

123

O U W N

2. Initialize the label of the user variable (optional):

INITIALIZE
7{
(--0)

MONND_USER_TITLE(UserMonitor , 1, ”Log(time)”);
%}

The value ’1’ could be ’2’ or '3’ for the user2,user3 variable.

3. Set the user variable value in a TRACE component EXTEND block:

1|TRACE

3|COMPONENT blah = blah_comp (...)

4| EXTEND

5|%{ // attach a wvalue to wuserl in UserMonitor, could be much more

comlex here.
6| MONND_USERVALUE(UserMonitor, 1, log(t));
7| %}

4. Tell the Monitor_nD instance to record user variables:

TRACE
(..)

COMPONENT' UserMonitor = Monitor-nD (options="auto userl”)

Setting the user variable values may either make use of the neutron parameters (x,y,z,
VX,VY,vz, t, SX,8y,8z, p), access the internal variables of the component that sets the
user variables (in this example, those from the blah instance), access any component
OUTPUT parameter using the MC_GETPAR C macro(see chapter , or simply use a
global instrument variable. Instrument parameters can not be used directly.

Example: Number of neutron bounces in a guide

In the following example, we show how the number of bounces in a polygonal guide may
be monitored. Let us have a guide made of many Guide_gravity instances. We declare
a global simulation variable nbounces, set it to 0 for each neutron entering the guide,
and sum-up all bounces from each section, accessing the Gvars OUTPUT variable of
component Guide_gravity. Then we ask Monitor_nD to look at that value.

DECLARE
7of
double nbounces;
o}
TRACE
COMPONENT Guide_in = Arm() AT (...)

124

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

EXTEND

7{
nbounces = 0;
%}
COMPONENT Guidel = Guide_gravity (...) AT (...) RELATIVE PREVIOUS

EXTEND

7of
if (SCATTERED) nbounces += GVars. N_reflection [0];
%o}
(... many guide instances, copy/paste and change names automatically ...)

COMPONENT COPY (Guidel) = COPY(Guidel) AT (...) RELATIVE PREVIOUS
EXTEND
7{
if (SCATTERED) nbounces += GVars. N_reflection [0];
70}

// monitor nbounces

COMPONENT UserMonitor = Monitor_nD (
userl=nbounces, usernamel="Number of bounces”
options="auto userl”) AT (...)

(..)

9.8.8. Monitoring neutron parameter correlations, PreMonitor_nD

The first imediate usage of the Monitor_nD component is when one requires to identify
cross-correlations between some neutron parameters, e.g. position and divergence (aka
phase-space diagram). This latter monitor would be merely obtained with:

1| options="x dx, auto”, bins=30 I

This example records the correlation between position and divergence of neutrons at a
given instrument location.

Name: PreMonitor_ nD
Author: System, E. Farhi
Input parameters comp

Optional parameters

Notes

But it is also possible to search for cross-correlation between two part of the in-
strument simulation. One example is the acceptance phase-diagram, which shows the
neutron caracteristics at the input required to reach the end of the simulation. This
spatial correlation may be revealed using the PreMonitor nD component. This latter
stores the neutron parameters at a given instrument location, to be used at an other
Monitor_nD location for monitoring.

The only parameter of PreMonitor_nD is the name of the associated Monitor_nD
instance, which should use the premonitor option, as in the following example:

1|COMPONENT CorrelationLocation = PreMonitor_nD (comp = CorrelationMonitor) '

125

0 O Ut W

AT (...)
(... e.g. a guide system)
COMPONENT CorrelationMonitor = Monitor_nD (
options="x dx, auto, all bins=30, premonitor”)
AT (...)

which performs the same monitoring as the previous example, but with a spatial cor-
relation constrain. Indeed, it records the position vs the divergence of neutrons at the
correlation location, but only if they reach the monitoring position. All usual Moni-
tor_nD variables may be used, except the user variables. These latter may be defined as
described in section in an EXTEND block.

126

10. Special-purpose components

The chapter deals with components that are not easily included in any of the other
chapters because of their special nature, but which are still part of the McStas system.

One part of these components deals with splitting simulations into two (or more)
stages. For example, a guide system is often not changed much, and a long simulation
of neutron rays “surviving” through the guide system could be reused for several sim-
ulations of the instrument back-end, speeding up the simulations by (typically) one or
two orders of magnitude. The components for doing this trick is Virtual_input and
Virtual output, which stores and reads neutron rays, respectively.

Other components perform the simulation of the instrument resolution functions.
These are Res_sample and TOF_Res_sample, which are to be placed at the sample
position, and Res_monitor, that should be localized at the position of the instrument
detector.

Progress_bar is a simulation utility that displays the simulation status, but assumes
the form of a component.

127

10.1. Virtual_output: Saving the first part of a split simulation

Input Parameters for component Virtual_output from sources

1|<Parameter = value>, [Unit], Description

The component Virtual_output stores the neutron ray parameters at the end of the
first part of a split simulation. The idea is to let the next part of the split simulation
be performed by another instrument file, which reads the stored neutron ray parameters
by the component Virtual _input.

All neutron ray parameters are saved to the output file, which is by default of “text”
type, but can also assume the binary formats “float” or “double”. The storing of neutron
rays continues until the specified number of simulations have been performed.

buffer-size may be used to limit the size of the output file, but absolute intentities
are then likely to be wrong. Exept when using MPI, we recommend to use the default
value of zero, saving all neutron rays. The size of the file is then controlled indirectly
with the general ncounts parameter.

10.2. Virtual_input: Starting the second part of a split
simulation

Input Parameters for component Virtual_input from sources

1|<Parameter = value>, [Unit], Description

The component Virtual_input resumes a split simulation where the first part has
been performed by another instrument and the neutron ray parameters have been stored
by the component Virtual_output.

All neutron ray parameters are read from the input file, which is by default of “text”
type, but can also assume the binary formats “float” and “double”. The reading of
neutron rays continues until the specified number of rays have been simulated or till the
file has been exhausted. If desirable, the input file can be reused a number of times,
determined by the optional parameter “repeat-count”. This is only useful if the present
simulation makes use of MC choices, otherwise the same outcome will result for each
repetition of the simulation (see Appendix .

Care should be taken when dealing with absolute intensities, which will be correct
only when the input file has been exhausted at least once.

The simulation ends with either the end of the repeated file counts, or with the normal
end with ncount McStas simulation events. We recommend to control the simulation on
repeat-count by using a very larger ncount value.

128

10.3. Res_sample: A sample-like component for resolution
calculation

Input Parameters for component Res_sample from misc

1|<Parameter = value>, [Unit], Description

The component Res_sample scatters neutron rays isotropically in direction and uni-
formly in energy. Regardless of the state of the incoming neutron ray, all directions and
energies for the scattered ray have the same probability, within specified intervals.

The component is meant for computation of the resolution function, but may also be
used for test and debugging purposes. For actual calculations of the resolution function,
Res_sample should be used together with Res_monitor, described in section [10.5)

The shape of Res_sample is either a hollow cylinder or a rectangular box. The hollow
cylinder shape is specified with the outer radius, r and thickness, respectively, and the
height, h. If these parameters are unspecified, the shape is instead a box of dimensions
Tw, Yn, and zz. The component only propagates neutron rays that are scattered; other
rays are absorbed. The scattering probability is proportional to the neutron flight path
length inside the sample, to make a true volume weighting of the sample. The reason
for this is that the resolution function of an instrument is independent of any sample
properties such as scattering and absorbtion cross sections but will in general depend on
sample size and shape.

The point of scattering inside the sample is chosen uniformly along the neutron flight
path inside the sample, and the scattered neutron ray is given a random energy and
direction. This energy is selected in the interval [Ey — AE; Ey + AE] which hence must
be chosen large enough to cover all interesting neutron energies. Similarly, the scattered
direction is chosen in a user-specified range, either within a sphere of radius r¢ycys, within
a rectangular target with measures (Zfocus, Yfocus) O in the specified angular range. This
target is positioned at the Ziarget, Ytarget, Ztarget POINt in space, or using the target_index
for which e.g. 1 is the further component, -1 is the previous, etc...

A special feature, used when computing resolution functions, is that the compo-
nent stores complete information about the scattering event in the output parameter
res_struct. The information includes initial and final wave vectors, the coordinates of
the scattering point, and the neutron weight after the scattering event. From this infor-
mation the scattering parameters (Q,w) can be recorded for every scattering event and
used to compute the resolution function. For an example of using the information in the
output parameter, see the description of the Res_monitor component in section [10.5

10.4. TOF_Res_sample: A sample-like component for TOF
resolution calculation

Input Parameters for component TOFRes_sample from misc

1|<Parameter = value>, [Unit], Description I

129

The component TOF_Res_sample scatters neutron rays isotropically in position
within a specified angular range. As for Res_sample, this component is meant for
computation of the resolution function, but in this case for one time bin in a time-of-
flight (TOF) instrument. The component selects uniformly the neutron energy so that
neutron arrival time at the TOF detector lies within one time bin, specified by ty, and
At. For actual calculations of the resolution function, TOF_Res_sample should be
used together with Res_monitor, described in section [10.5

The shape of TOF_Res_sample is either a hollow cylinder or a rectangular box. The
hollow cylinder shape is specified with the inner and outer radius, r; and r,, respectively,
and the height, h. If these parameters are unspecified, the shape is instead a box of
dimensions x,,, yx, and z;.

The component only propagates neutron rays that are scattered; other rays are ab-
sorbed. As for Res_sample, the scattering probability is proportional to the neutron
flight path length inside the sample. The point of scattering in the sample is chosen
uniformly along the neutron flight path inside the sample, and the scattered direction is
chosen in a user-specified range, either within a sphere of radius r¢,., within a rectangu-
lar target with measures (Zfocus, Yfocus) OF in the specified angular range. This target is
positioned at the Tiarget, Ytargets Ztarget POINt in space, or using target_index.

This component stores complete information about the scattering event in the output
parameter res_struct, see Res_Sample.

10.5. Res_monitor: The monitor for resolution calculation

Input Parameters for component Res_monitor from misc

l|<Parameter = value>, [Unit], Description I

B~ W N

The component Res_monitor is used for calculating the resolution function of a
particular instrument with detector of the given shape, size, and position. The shape of
Res_monitor is by default rectangular, but can be a box, a sphere, a disk, or a cylinder,
depending on the parameter “options”. The component works like a normal monitor,
but also records all scattering events and stores them to a file that can later be read by
the McStas frontend tool mcresplot.

For time-of-flight (TOF) instruments, Res_monitor should be understood as giving the
resolution of one time bin of the TOF-detector only; the bin properties being specified
in the preceding TOF _Res_sample.

As described in section the Res_monitor should be used in connection with one
of the components Res_sample or TOF_Res_sample, the name of which should be
passed as an input parameter to Res_monitor. For example

COMPONENT mysample = Res_sample(...)

COMPONENT' det = Res_monitor (res_sample_comp = mysample, ...)

130

The output file is in ASCII format, one line per scattering event, with the following
columns:

e k;, the three components of the initial wave vector.

k¢, the three components of the final wave vector.

r, the three components of the position of the scattering event in the sample.

pi, the neutron weight just after the scattering event.

pf, the relative neutron weight adjustment from sample to detector (so the total
weight in the detector is pipy).

From k; and k¢, we may compute the scattering parameters x = k; — kf and hw =
h? /(2mn) (k? —k?). The vectors are given in the local coordinate system of the resolution
sample component. The wave vectors are in units of A_l, the energy transfer in meV.

The output parameters from Res_monitor are the three count numbers, Nsum, psum,
and p2sum, and the handle file of the output file.

131

10.6. Progress bar: Simulation progress and automatic saving

Name:

Progress_bar

Author:

System

Input parameters

percent, flag_save, profile

Optional parameters
Notes

This component displays the simulation progress and status but does not affect the
neutron parameters. The display is updated in regular intervals of the full simulation;
the default step size is 10 %, but it may be changed using the percent parameter (from
0 to 100). The estimated computation time is displayed at the begining and actual
simulation time is shown at the end.

Additionally, setting the flag_save to 1 results in a regular save of the data files
during the simulation. This means that is is possible to view the data before the end of
the computation, and have also a trace of it in case of computer crash. The achieved
percentage of the simulation is stored in these temporary data files. Technically, this
save is equivalent to sending regularly a USR2 signal to the running simulation.

The optional 'profile’ parameter, when set to a file name, will produce the number
of statistical events reaching each component in the simulation. This may be used to
identify positions where events are lost.

10.7. Beam spy: A beam analyzer

Name:

Author:

Input parameters
Optional parameters
Notes

Beam_spy

System

should overlap previous component

This component is at the same time an Arm and a simple Monitor. It analyzes all
neutrons reaching it, and computes statistics for the beam, as well as the intensity.

This component does not affect the neutron beam, and does not contain any propaga-
tion call. Thus it gets neutrons from the previous component in the instrument descrip-
tion, and should better be placed at the same position, with AT (0,0,0) RELATIVE PREVIOQUS.

132

A. Polarization in McStas

P. Christiansen (Risg)
January 7, 2026

A.1. Introduction

In the current release of McStas there are components with polarization capabilities.
At the moment all such components should be understood as under development as the
amount of testing and debugging of these components is small, and there are known
problems.

Here, we shall report on what have been done so far.

We first describe the polarization vector and how it is related to the neutron wave-
function (Section and then the physics of simple components that we need in McStas
is reviewed (section [A.3)). In the last two sections the actual McStas polarization com-
ponents are first described (section and a list of test instruments in McStas is given
(section [A.5]).

We rely heavily on the books [Lov84; Wil88| for the physics where the detailed calcu-
lations can be found.

The notation used here (and in [Wil88]) is P (scalar), P (vector), P (unit-vector), &
(operator), and & (vector of operators).

A.2. The Polarization Vector

The spin of the neutron is represented by an operator § for which only a single component
can be measured at one time. Each single measurement will give a value £1/2, but if we
could make a large number of measurements on the same neutron state, in each of the
three axis directions, and then make the average we get (8). The polarization vector, P,
is then defined as:
P= i>, (A.1)
s

so that —1 < |P| < +1

For a neutron beam which contains IV neutrons, each with a polarization P;, the beam
polarization is defined as:

P = ZNP (A.2)

133

If we have one common quantization direction (e.g. a magnetic field direction) each
neutron will either be spin up, 1, or spin down, |, and the polarization can be expressed
as:

p="t" " (A.3)
ny +mny
where v (n}) is the number of neutrons with spin up (down).
For a given neutron the probability of the neutron being spin up, P(1), is:
n n+(mn—ny)/2 1+ P
ny +mny ny +mny 2
and P()=1—-P(1)=(1-P)/2.
The expectation value of the ’spin’ operator, &, which can be expressed by the Pauli
matrices, is the polarization vector P, P = (6) = (x|&|x). The most general form of
the spin wave-function x for a neutron (spin 1/2) is:

(A.4)

X = axy + bxy, (A.5)

where x4 and x| are eigenfunction of 6%, and the complex coefficients a and b satisfy
laf® + [b]? = 1.
By calculation we find:

Pr = (x|0z]x) = 2Re(a’b) (A.6)
By = (x|oy[x) = 2Im(a"d) (A7)
P, = (x|é:|x) = lal* — |b]? (A.8)

This shows the relation of the polarization vector to the neutron wave function.
The neutron magnetic moment operator can be expressed in terms of &, as:

By = pno, (AQ)

which, as shown above, is related to the polarization vector.

In our simulation we represent the polarization by the vector S = (s, sy, s,) which is
propagated through the different components so it has the correct relative orientation in
each component. The probability for the spin to be parallel a given direction n is then:

Pty = 228

This equation (from [SDO1]) is easy to understand. The average spin along nis n-S
and the probability then follows from Eq. [A-4]

For an unpolarized beam, S = 0 and all directions are equally probable (50 %).

Note that in our approach we do not decide if the neutron is up or down after a given
component, but instead keep track of as much information for as long as possible.

(A.10)

134

In the following we will use P to denote the polarization vector. The most important
variables used are:

K Scattering vector.

P Polarization before a component (ingoing).

P, Polarization perpendicular to scattering vector, P; = K x (P x R).

P’ Polarization after a component (outgoing).

n Unit vector in direction of atomic spin (7 - B = —1 for a ferromagnet).

Fn(k) Unit cell nuclear structure factor.
Fy(k) Unit cell magnetic structure factor.

The unit cell nuclear structure factor is defined as:

Fy(k) = Z exp(ik - d)by, (A.11)
d
where the d is the position of the d’th atom within the unit cell, and by is the average
of bg. In the simple case of a single atom Bravais crystal one finds Fy (k) = b.
The unit cell magnetic structure factor is useful when the atoms in the crystal only
have spin orbital angular momentum, and simple when the magnet is saturated (all spins
are parallel or anti-parallel to one direction, o4 = +1). It is then given as:

Far() = ynro Y _ explik d)%ngd(K)@de, (A12)
d

where g = Z—fr% = 2.818 x 10~ %m, g = 2 is the Landé splitting factor, and Fy(k) is
the magnetic form factor, which is the Fourier transform of the magnetization density
(normalized so that Fy(0) = 1), and (Sy) is the thermal average of the ordered atomic
spin.

In the following the Debye-Weller factor (exp(—Wjy)) have been ignored in all cross
sections.

A.2.1. Example: Magnetic fields

The magnetic moment operator of the neutron is fi,, = v,8, where v, = 2u,, = —3.826 is
the gyromagnetic ratio (spin and magnetic moment is anti-parallel as for an electron) F_-I

A magnetic field, B, will exert a torque, o = ds/dt = (1/v,)dpu/dt, on the neutron
magnetic moment:

1dp _
yodt

The magnetic moment p can be related to the polarization as p = 7, P /2, and inserting

in Eq. we find:

x B (A.13)

dpP
~ —4,PxB (A.14)
dt
'Note that if we had used S (with values S = #1) to define v,, we would get v, = —1.913 which is also
commonly used.

135

In the simple case where B = (0,0, B), we find the solution (|[Wil8§|] p. 18) :

Px(t) = cos(wrt)Px(0) — sin(wrt) Py (0)
Py(t) = sin(wpt)Px(0) + cos(wpt)Py(0) (A.15)

where wy, = —vy,B/h is the Larmor frequency.

The equations above were checked against the equations in the “polarimetrie
neutronique” notes by Francis Tasset and found to be consistent. There
can be sign differences between different publications depending on whether
they use a right-handed (like e.g. McStas) or a left-handed (like e.g. NISP)
coordinate system.

A.3. Polarized Neutron Scattering

First we will give a short introduction to how calculations are done and then quote some
results which are important for implementing the first McStas components.

All the potentials (nuclear, magnetic, and electric) we will be interested in can be
written on the form:

b=F+a&-6 (A.16)

The first term does not affect the spin, while the second term can change the spin.
Let us just remind here that:

OxXt = X4 OyXt = 10X}, 0zX1 = Xt (A.17)
OzXy = Xty OyX| = —IXp, 02X, = —X{-
So that the interaction proportional to 6, and &, results in spin flips, while the
interactions with &, conserves the spin.
It turns out to be smart to define a density matrix operator:

2 *
N o ‘CL‘ ab . 1 4

where x is the neutron wave function (Eq.[A.5)), and 7 is the unit matrix.

Using the density matrix the elastic cross section can be written as (|[Lov84|, Eq. 10.31):

do b a A N
= Trpo'o =Y paTep(A[VT(K)IX) (X |V (k)| A)S(Ex — Ex), (A.19)
AN

where V is the interaction potential and it is understood that the trace is to be taken
with respect only to the neutron spin coordinates. The outgoing polarization is given

136

as:

P — =Trpofe0 = paTrpNVIK)N)Ye (N |V (K)N(Ex — Ey) (A.20)
AN

Inserting Eq. in Eq. and Eq. results in the two master equations for
polarized neutron scattering:

Trpito = af - a+ B3+ Bl(a-P)+ (@l - P)g+iP - (af x &), (A.21)

and

Trppteo = ftatal f+41pP+al (a-P)+(af - P)a—P(al-a)—ial xa+ift (axP)+i(Pxah)p.
(A.22)
Based on these two equations and the interaction potentials all the results presented
in the following are derived in [Lov84].

A.3.1. Example: Nuclear scattering

The nuclear scattering potential for a crystal is:

N . 1 . a
Vn(k) = exp(ir - Rig) (A + 5 Bia6 - Lia), (A.23)
1d
so that
N . 1 .
o = % exp(zm . Rld)iBldIld (A.24)
B = Z exp(in . Rld)Alch (A.25)
1.d

where I is the nuclear spin operator and the constants A and B are related to the
nuclear scattering lengths b™ and b~ as A = ((I + 1)b* + Ib7)/(2] + 1) and B =
(b +b7)/ (21 +1).

To calculate the polarization cross section and outgoing polarization we have to average
over the nuclear spin (which we assume is random oriented), so that terms linear in &

(three last terms in Eq. |A.21)) disappears. The scattering cross section ends up being
(see |Lov84] p. 159):

do | _ 1
0= > exp(ir - (Rig — Rya))([Aal® + dipvdaa [[Aal® — [Aq) + BalLa(la + 1)])
Ld,Td’

(A.26)

137

where the first term is the coherent cross-section and the second term is the site-
incoherent cross-section. Both terms are independent of P as expected for a system
without a preferred internal direction.

The polarization in the final state is:

do) _ _ 1—
P,CTQ = exp(“{'(Rld—Rl/d’))P,(|Ad|2+5l,1’5d,d’[|Ad|2_’Ad’2_E|Bd|QId(Id+1)])
Ldv.d’

(A.27)

Comparing Eq. and Eq. we find that: 1) The nuclear coherent polarization

is the same as the initial polarization. 2) The same is true for the incoherent scattering
due to the random isotope distribution. 3) The nuclear incoherent scattering due to the
random nuclear spin orientations has polarization P’ = —1/3P (for a random nuclear

spin the associated Pauli matrix will 2/3 of the time point in the direction of 6, and &,
which according to Eq. flips the spin).

For Vanadium, where there is only one isotope and coherent scattering is negligible, we
find P’ = —1/3P. There is however one catch. If the probability for multiple scattering
is large one has to take into account that after two scattering one has: P’(2) = 1/9P,
and so forth. The average polarization after a thick vanadium target is therefore a sum
of different contributions.

A.3.2. Example: Polarizing Monochromator and Guides

A

P=+1

P=_ K }:iji,,»»»»___________”»»»»—“———““\

Figure A.1.: Principle and geometry of a polarizing monochromator.

138

In a polarized monochromator and polarizing guides we have a ferromagnetic crystal
in an external magnetic field. The scattering potential is now both nuclear (no internal
direction) and magnetic (internal direction), so in general the outgoing polarization can
be quite complex. However, as illustrated in Figure the typical setup has many
geometrical constraints: -k =0, 7-P, = 7P, and k X (i) X k) = 7, which simplifies
the problem.

In [Lov84] the calculation for a centrosymmetric ferromagnetic crystal is done, and
inserting the constraints above one finds ([Lov84], Eq. 10.96 and Eq. 10.110):

do/dQ = Fn(k)?+2FN(k)Fy(k)(P-7) + Fy(k)? (A.28)
P'do/dQ = P[Fn(k)? — Fyu(k)?] + A[2FNn (k) Far (k) + 2(7 - P)Far (k)% (A.29)
NB! Note that in [Wil88] Eq. 2.2.25 there is a minus in front of the second
term in Eq. [A:28] We have not been able to understand this discrepancy,

which is probably due to notation. Most other authors agree with the minus
in front of the second term (e.g. Squires and Francis Tasset).

For a beam which is initially unpolarized we find the outgoing polarization to be:

Pz_ﬁQFN(“)FM(H)_ 2FN(K)Fy(K)
T do/dQ Fn(R)Z+ Fy(r)2T

so that the beam is fully polarized along 7 if Fx(k) = £Fy (k).

(A.30)

What we use to characterize the polarizing monochromator in practice is not Fy (k)
and Fy(k), but instead the reflection probabilities Ry and R (for the reflection of
interest).

If we assume that the reflection probabilities are directly proportional to the cross
sections (with proportionality constant k), i.e., Ry = kdo/dQ(P = +7) and R| =
kdo /dQ(P = —n) then we can use Eq. to determine Fy(k) and Fjs(k):

Rt = k(Fx(k)+ Fu(k))?, (A.31)
R, = k(Fn(k)— Fu(k))% (A.32)

The values of VkFy (k) and vkF)y (k) are then between -1 and +1 and unit less like
the reflection probabilities. In the following we ignore k and just talk about Fy (k) and
Fry(g).

In principle there are four solutions for F (k) and Fys(k), so in the code we currently
choose the values where Fn (k) + Far(k) = ++/Ry and Fn(k) — Fa(k) = ++/Ry (so
that Fy(k) > 0 and Fy(k) > Fy(k)). We then find:

Fy(k) = W, (A.33)
Fy(k) = W. (A.34)

139

When Fy (k) and Fj/(k) are determined from these equations, Eq. and Eq.
can easily be used to handle any situation.

This solution is both used for monochromators and guides.

It is not clear that this solution is correct. If we make a simple example with Ry =1
and R = 0.25 then we could in principle have four solutions, but let us just quote the
two where Fy(k) is positive since the last two are found by inserting a minus before
all the solutions and this does not change the physics. The two solutions are F (k) =
0.75, Fpr(k) = 0.25 and Fy(k) = 0.75, Fiy (k) = 0.25. All solutions gives the same cross
section, but if the incoming beam is polarized (and only then) the outgoing beam will
have two different polarization values, since P[Fy(k)? — Fir(k)?] and 72(7) - P) Fas (k)2
are different for the two solutions. It seems that one needs some additional information
to choose between the two solutions.

NB! The simplifying geometry shown in Figure only applies for the sides
of the guide wall and not the top and bottom (assuming that the magnetizing
field is pointing up or down), so there another set of equations should really
be used.

The same physics could also be used for a polarizing powder or single crystal sample
if Fy(k) and Fjr(k) can be calculated with some other program, but one would have
to use the general form of Eq. and Eq. without the simplifying geometrical
constraints for monochromators and guides.

A.4. New McStas Components
The components written so far can be divided into four groups:

e Polarizers: Components used to make the beam polarized.

e Monitors: Unphysical detectors that can measure the polarization of the neu-
tromns.

e Magnetic fields: Components used to handle magnetic fields.

e Samples: Samples that affects the polarization.

A.4.1. Polarizers

Some of the most common ways of polarizing a beam have been implemented.

e Set_pol: This unphysical component can be used in two ways. Either to hard
code the polarization to the vector (pz,py,pz) or when randomOn!=0 to set the
polarization vector to a random vector on the unit sphere.

140

e Monochromator_pol: A monochromator that only does the n = 1 reflection. For
each neutron it calculates the wavelength which would give Bragg reflection, Apragg,
and it then calculates, based on one mosaicity and one d-spread, the reflection
probability given the neutrons actual A\. The reflection probability is a Gaussian
in AN = X\ — ABragg, With the peak reflectivity and polarization calculated as
described in section [AZ3.2]

NB! Note that this monochromator reflects the neutrons billiard-like. In
Monochromator_flat the mosaicity of the reflecting crystal is taken
into account, but the d-spread is not taken into account. One should
implement d-spread and mosaicity in a way similar to what is done in
Single crystal.

e Pol_mirror: Plane with a reflection probability for up and down. There are 3
options: always reflect, always transmit, or random select transmit/reflect.

NB! Note that at the moment the plane only reflects from one side
(because it uses PROP _Z0.

e Pol_bender: Curved guide with the possibilities to insert multiple slits, and have
the end gap parallel to the entrance or following the guide angle. It is possible to
select different coatings (mirror parameters) for each of the four sides.

e Pol_guide_vmirror: Straight guide with non-polarizing coatings with two polar-
izing super mirrors sitting in a V shape inside.

Note that for all the polarizing guides it is possible to define analytical functions or
use tables for the up and down reflectivity descriptions.

A.4.2. Detectors

e Pol_monitor: One defines a vector m = (mx, my, mz) for the monitor and mea-
sures the projection of the spin along this vector i.e. m - S.

¢ PolLambda monitor: Measures the projection of the spin along the defined
vector m (see Pol_monitor) as a function of the wavelength .

e MeanPolLambda_monitor: Measures the average projection of the spin along
the defined vector m (see Pol_monitor) as a function of the wavelength .

NB! currently the error on the mean is shown (o/+/(N)), but it might
make more sense to show the spread (o).

141

A.4.3. Magnetic fields

Much inspiration for the components and the tests have been found in [SDO1].

e Pol_constBfield: A rectangular box with a constant magnetic field in the y-
direction. The x- and z-components of the spin precess with the Larmor frequency
wr,. It is possible to define the field in terms of a wavelength so that the spin will
precess 180 degrees for the given wavelength. The component can be rotated to
have the field along another axis.

e Pol simpleBfield: The first attempt at a component for handling general mag-
netic fields. It is a concentric component where you define a start and stop com-
ponent for each field, but this allows other components, e.g. monitors, to be put
inside the field. The component overloads the propagation routines so that numer-
ical spin propagation is done for analytical magnetic fields.

NB! At the moment both components does not really check the bound-
aries of the field on the sides, but merely assumes that the field starts
at the entrance plane and stops at the exit plane.

Also, some optimization remains for the numerical component and it
would be nice to support tabulated magnetic field files. However, the
framework developed for Pol_simpleBfield is very general and should
easily facilitate these changes.

A.4.4. Samples

e V_sample: Modified the sample so that the scattered neutron has P’ = —1/3P.
Note that this component does not handle multiple scattering, so this approach is
correct. If the components handled multiple scattering the polarization should be
set to P’ = (—1/3)"P, where n is the number of scatterings.

A.5. Tests With New Components

All the test instruments can be found in the McStas examples folder (go to “Neutron
site/tests” in mcgui).

There are basically two kind of tests. The first kind of tests shows that the polarizing
component can reproduce the same results as a similar non-polarizing component:

e Test_Monochromators.instr : Intercomparison of Monochromator_flat and Monochro-
mator_pol.

e Test_Pol_Bender_Vs_Guide_Curved.instr : Intercomparison of Guide_curved and
Pol_bender.

142

The second type of test illustrates the polarizing capabilities of the component:
o Test_Magnetic_Constant.instr : Constant magnetic field.

o Test_Magnetic_Majorana.instr : Linearly decreasing field with small transverse
component.

o Test_Magnetic_Rotation.instr : Rotating magnetic field.

o Test_Magnetic_Userdefined.instr : Example of how to make a user defined analytic
magnetic field that can also depend on time.

e Test_Pol_Bender.instr : Illustrates beam polarization with the Pol_bender.

o Test_Pol_Set.instr : Tests Pol_set.

e Test_Pol_Guide_Vmirror.instr : Illustrates beam polarization with the Pol_guide_vmirror.
e Test_Pol_Mirror.instr : Illustrates beam polarization with the Pol_mirror.

e Test_Pol_TripleAxis.instr : An example of a triple axis spectrometer with polariz-
ing monochromators, a vanadium sample, and a spin flipper.

143

B. Libraries and constants

The McStas Library contains a number of built-in functions and conversion constants
which are useful when constructing components. These are stored in the share directory
of the MCSTAS library.

Within these functions, the 'Run-time’ part is available for all component /instrument
descriptions. The other parts are dynamic, that is they are not pre-loaded, but only
imported once when a component requests it using the %include McStas keyword. For
instance, within a component C code block, (usually SHARE or DECLARE):

1 %include ”"read_table—lib” I

will include the 'read_table-lib.h’ file, and the 'read_table-lib.c’ (unless the ~——no-runtime
option is used with mcstas). Similarly,

1 %include ”read_table—lib .h” I

will only include the ’read_table-lib.h’. The library embedding is done only once for
all components (like the SHARE section). For an example of implementation, see
Res_monitor.

In this Appendix, we present a short list of both each of the library contents and the
run-time features.

B.1. Run-time calls and functions (mcstas-r)

Here we list a number of preprogrammed macros which may ease the task of writing
component and instrument definitions.

B.1.1. Neutron propagation

Propagation routines perform all necessary operations to transport neutron rays from
one point to an other. Except when using the special ALLOW_BACKPROP; call prior to
executing any PROP_* propagation, the neutron rays which have negative propagation
times are removed automatically.

e ABSORB. This macro issues an order to the overall McStas simulator to interrupt
the simulation of the current neutron history and to start a new one.

e PROP_ZO0. Propagates the neutron to the z = 0 plane, by adjusting (z,y, z) and
t accordingly from knowledge of the neutron velocity (vz,vy,vz). If the propaga-
tion time is negative, the neutron ray is absorbed, except if a ALLOW_BACKPROP;
preceeds it.

144

For components that are centered along the z-axis, use the _intersect functions
to determine intersection time(s), and then a PROP_DT call.

PROP_DT(dt). Propagates the neutron through the time interval dt, adjusting
(z,y,z) and t accordingly from knowledge of the neutron velocity. This macro
automatically calls PROP_GRAV_DT when the --gravitation option has been
set for the whole simulation.

PROP_GRAV_DT(dt, Az, Ay, Az). Like PROP_DT, but it also includes grav-
ity using the acceleration (Ax, Ay, Az). In addition to adjusting (z,y,z) and ¢,
also (vz,vy,vz) is modified.

ALLOW _BACKPROP. Indicates that the next propagation routine will not
remove the neutron ray, even if negative propagation times are found. Subsequent
propagations are not affected.

SCATTER. This macro is used to denote a scattering event inside a component.
It should be used e.g to indicate that a component has interacted with the neutron
ray (e.g. scattered or detected). This does not affect the simulation (see, how-
ever, Beamstop), and it is mainly used by the MCDISPLAY section and the GROUP
modifier See also the SCATTERED variable (below).

B.1.2. Coordinate and component variable retrieval

MC_GETPAR(comp, outpar). This may be used in e.g. the FINALLY section
of an instrument definition to reference the output parameters of a component.

NAME _CURRENT_COMP gives the name of the current component as a
string.

POS_A_CURRENT_COMP gives the absolute position of the current compo-
nent. A component of the vector is referred to as POS_A_CURRENT_COMP.;
where 7 is z, y or z.

ROT_A_CURRENT _COMP and ROT_R_CURRENT _COMP give the ori-
entation of the current component as rotation matrices (absolute orientation and
the orientation relative to the previous component, respectively). A component of
a rotation matrix is referred to as ROT_A_CURRENT_COMP[m][n], where m and
n are 0, 1, or 2 standing for z,y and z coordinates respectively.

POS_A_COMP (comp) gives the absolute position of the component with the
name comp. Note that comp is not given as a string. A component of the vector
is referred to as POS_A_COMP (comp).i where i is z, y or z.

ROT_A_COMP (comp) and ROT_R_COMP (comp) give the orientation of the
component comp as rotation matrices (absolute orientation and the orientation
relative to its previous component, respectively). Note that comp is not given as a

145

146

string. A component of a rotation matrice is referred to as ROT_A_COMP (comp)[m][n],
where m and n are 0, 1, or 2.

INDEX_CURRENT_COMP is the number (index) of the current component
(starting from 1).

POS_A_COMP_INDEX((index) is the absolute position of component indez.
POS_A_COMP_INDEX (INDEX_CURRENT_COMP) is the same as
POS_A_CURRENT_COMP. You may use

POS_A_COMP_INDEX (INDEX_CURRENT_COMP+1)

to make, for instance, your component access the position of the next component
(this is usefull for automatic targeting). A component of the vector is referred to
as POS_A_COMP _INDEX(index).i where i is z, y or z.

POS_R_COMP_INDEX works the same as above, but with relative coordinates.

STORE_NEUTRON (index, z,y, z, vz, vy, vz, t, s, sy, sz,p) stores the current
neutron state in the trace-history table, in local coordinate system. index is usu-
ally INDEX_CURRENT_COMP. This is automatically done when entering each
component of an instrument.

RESTORE NEUTRON (index, x,y, z, vz, vy, vz, t, sz, sy, sz, p) restores the neu-
tron state to the one at the input of the component index. To ignore a component
effect, use RESTORE_NEUTRON (INDEX_CURRENT_COMP,

x,y, z,0x, vy, vz, t, sx, sy, sz, p) at the end of its TRACE section, or in its EXTEND
section. These neutron states are in the local component coordinate systems.

SCATTERED is a variable set to 0 when entering a component, which is incre-
mented each time a SCATTER event occurs. This may be used in the EXTEND
sections to determine whether the component interacted with the current neutron
ray.

extend list(n, &arr, &len, elemsize). Given an array arr with len elements each
of size elemsize, make sure that the array is big enough to hold at least n elements,
by extending arr and len if necessary. Typically used when reading a list of
numbers from a data file when the length of the file is not known in advance.

mcset_ncount(n). Sets the number of neutron histories to simulate to n.

mcget_ncount(). Returns the number of neutron histories to simulate (usually
set by option -n).

mcget_run_num(). Returns the number of neutron histories that have been sim-
ulated until now.

B.1.3. Coordinate transformations

coords_set(z,y, z) returns a Coord structure (like POS_A_.CURRENT_COMP)

with z, ¥y and z members.

coords_get(P, &z, &y, &z) copies the z, y and z members of the Coord structure
P into x,y, z variables.

coords_add(a,b), coords_sub(a,b), coords_neg(a) enable to operate on coor-
dinates, and return the resulting Coord structure.

rot_set_rotation(Rotation t, ¢.,py,¢.) Get transformation matrix for rotation
first ¢, around x axis, then ¢, around y, and last ¢. around z. t should be a
'Rotation’ ([3][3] ’double’ matrix).

rot_mul (Rotation t1, Rotation t2, Rotation t3) performs t3 = t1.12.
rot_copy (Rotation dest, Rotation src) performs dest = src for Rotation arrays.
t

rot_transpose(Rotation src, Rotation dest) performs dest = src'.

rot_apply (Rotation t, Coords a) returns a Coord structure which is t.a

B.1.4. Mathematical routines

NORM(z,y, z). Normalizes the vector (z,y, z) to have length 1 *.

scalar_prod(a,, ay, az, by, by, b.). Returns the scalar product of the two vectors
(az,ay,a;) and (by,by,b).

vec_prod(az,ay,az, by,by,b., cz,cy,c.). Sets (ag,ay,a.) equal to the vector product
(bxv bya bz) X (va Cya CZ) *

rotate(x,y,z, Uz,0y,0z, ¥, Az,0y,az). Set (z,y, z) to the result of rotating the vector
(vz, vy, v;) the angle ¢ (in radians) around the vector (az, ay,a.) *

normal_vec(ng, ny, n., x, y, z). Computes a unit vector (ng,ny,n,) normal to
the vector (z,y,z).*

solve_2nd_order(&t, &ty A, B, C). Solves the 2" order equation At?+Bt+C =
0 and returns the solutions into pointers *t; and *to. if 5 is specified as NULL, only
the smallest positive solution is returned in t;.

(* The experienced c-programmer may be puzzled that these routines can return infor-
mation without the use of pass by reference, the reason is that these calls are implemented
as macros / #define wrapped functions.)

147

B.1.5. Output from detectors

Details about using these functions are given in the McStas User Manual.

e DETECTOR_OUT_0D(...). Used to output the results from a single detector.
The name of the detector is output together with the simulated intensity and
estimated statistical error. The output is produced in a format that can be read
by McStas front-end programs.

e DETECTOR_OUT_1D(...). Used to output the results from a one-dimensional
detector. Integrated intensities error etc. is also reported as for DETECTOR_OUT_0D.

e DETECTOR_OUT _2D(...). Used to output the results from a two-dimentional
detector. Integrated intensities error etc. is also reported as for DETECTOR_OUT_0D.

¢ DETECTOR_OUT_3D(...). Used to output the results from a three-dimentional
detector. Arguments are the same as in DETECTOR_OUT_2D, but with an ad-
ditional z axis. Resulting data files are treated as 2D data, but the 3rd dimension
is specified in the type field. Integrated intensities error etc. is also reported as for

DETECTOR-OUT_0D.

e mcinfo_simulation(FILE *f, mcformat, char *pre, char *name) is used to ap-
pend the simulation parameters into file f (see for instance Res_monitor). Inter-
nal variable mcformat should be used as specified. Please contact the authors for
further information.

B.1.6. Ray-geometry intersections

e inside_rectangle(z, y, zw, yh). Return 1 if —zw/2 <z < zw/2 AND —yh/2 <
y < yh/2. Else return 0.

e box_intersect(&t1, &to, z, y, 2, Vs, Uy, Vs, dy, dy, d;). Calculates the (0, 1, or
2) intersections between the neutron path and a box of dimensions d,, d, and d,
centered at the origin for a neutron with the parameters (x,y, 2, vy, vy, v;). The
times of intersection are returned in the variables ¢; and t9, with 1 < £9. In the
case of less than two intersections, t; (and possibly t2) are set to zero. The function
returns true if the neutron intersects the box, false otherwise.

e cylinder_intersect(&t1, &to, x, y, 2, vy, vy, v, 7, h). Similar to box_intersect,
but using a cylinder of height h and radius r, centered at the origin.

e sphere_intersect(&ty, &to, z, y, 2, Uy, vy, U,). Similar to box_intersect, but
using a sphere of radius 7.

B.1.7. Random numbers

e rand01(). Returns a random number distributed uniformly between 0 and 1.

148

0~ O Uk W

e randnorm(). Returns a random number from a normal distribution centered
around 0 and with ¢ = 1. The algorithm used to sample the normal distribution
is explained in Ref. [Pre+86, ch.7].

e randpm1(). Returns a random number distributed uniformly between -1 and 1.

e randtriangle(). Returns a random number from a triangular distribution between
-1 and 1.

e randvec_target_circle(&v,, &vy, &v., &d2, aim,, aim,, aim,, ;). Generates
a random vector (vg,vy,v;), of the same length as (aim,, aim,, aim.), which is
targeted at a disk centered at (aimg, aim,, aim,) with radius r; (in meters),
and perpendicular to the aim vector.. All directions that intersect the circle are
chosen with equal probability. The solid angle of the circle as seen from the po-
sition of the neutron is returned in df2. This routine was previously called rand-
vec_target_sphere (which still works).

e randvec_target_rect_angular(&v,, &vy, &v,, &dQ, aim,, aim,, aim;,h, w, Rot)
does the same as randvec_target_circle but targetting at a rectangle with angular
dimensions A and w (in radians, not in degrees as other angles). The rotation
matrix Rot is the coordinate system orientation in the absolute frame, usually
ROT_A_CURRENT_COMP.

e randvec_target_rect(&v,, &vy, &v,, &dS), aim,, aim,,, aim,,height, width, Rot)
is the same as randvec_target_rect_angular but height and width dimensions are
given in meters. This function is useful to e.g. target at a guide entry window or
analyzer blade.

B.2. Reading a data file into a vector/matrix (Table input,
read table-1ib)

The read_table-1ib provides functionalities for reading text (and binary) data files. To
use this library, add a %include "read_table-1ib" in your component definition DE-
CLARE or SHARE section. Tables are structures of type t_Table (see read_table-1ib.h
file for details):

/* t_-Table structure (most important members) */

double xdata; /* Use Table_Index(Table, i j) to get element [i,j] */
long rows ; /* number of rows x/

long columns; /* number of columns x/

char xheader; /* the header with comments */

char xfilename; /* file name or title x/

double min_x; /* minimum value of 1st column/vector */

double max_x; /* mazimum value of 1st column/vector x*/

Available functions to read a single vector/matrix are:

149

e Table_Init(&Table, rows, columns) returns an allocated Table structure. Use
rows = columns = 0 not to allocate memory and return an empty table. Calls to
Table_Init are optional, since initialization is being performed by other functions
already.

e Table_Read(&Table, filename, block) reads numerical block number block (0 to
concatenate all) data from text file filename into Table, which is as well initialized
in the process. The block number changes when the numerical data changes its
size, or a comment is encoutered (lines starting by # ; % /’). If the data could
not be read, then Table.data is NULL and Table.rows = 0. You may then try to
read it using Table_Read_Offset_Binary. Return value is the number of elements
read.

e Table Read_Offset(&Table, filename, block, &offset, nyows) does the same as
Table_ Read except that it starts at offset offset (0 means begining of file) and
reads nyous lines (0 for all). The offset is returned as the final offset reached after
reading the 1,445 lines.

e Table Read Offset_Binary(&Table, filename, type, block, &offset, Nrows, Neolumns)
does the same as Table_Read_Offset, but also specifies the type of the file (may
be "float” or ”"double”), the number 7,4,s of rows to read, each of them having
Neolumns €lements. No text header should be present in the file.

e Table Rebin(&T'able) rebins all T'able rows with increasing, evenly spaced first
column (index 0), e.g. before using Table_Value. Linear interpolation is performed
for all other columns. The number of bins for the rebinned table is determined
from the smallest first column step.

e Table_Info(Table) print information about the table T'able.
e Table Index(Table, m,n) reads the T'able[m|[n] element.

e Table_Value(Table,z,n) looks for the closest x value in the first column (index
0), and extracts in this row the n-th element (starting from 0). The first column
is thus the 'x’ axis for the data.

e Table_Free(&Table) free allocated memory blocks.

e Table_Value2d(T'able, X, Y') Uses 2D linear interpolation on a Table, from (X,Y)
coordinates and returns the corresponding value.

Available functions to read an array of vectors/matrices in a text file are:

e Table Read_Array(F'ile, &n) read and split file into as many blocks as neces-
sary and return a t_Table array. Each block contains a single vector/matrix. This
only works for text files. The number of blocks is put into n.

e Table Free_Array(&Table) free the Table array.

150

e Table Info_Array(&Table) display information about all data blocks.

The format of text files is free. Lines starting by '# ; % /’ characters are considered to
be comments, and stored in T'able.header. Data blocks are vectors and matrices. Block
numbers are counted starting from 1, and changing when a comment is found, or the
column number changes. For instance, the file'MCSTAS/data/BeO.trm’ (Transmission
of a Berylium filter) looks like:

BeO transmission , as measured on IN12
Thickness: 0.05 [m]

[k(Angs—1) Transmission (0—1)]

wavevector multiply

1.0500 0.74441

1.0750 0.76727

1.1000 0.80680

0 O Ut i W=

Binary files should be of type "float” (i.e. REAL*32) and ”double” (i.e. REAL*64),
and should not contain text header lines. These files are platform dependent (little or
big endian).

The filename is first searched into the current directory (and all user additional
locations specified using the -I option, see the 'Running McStas’ chapter in the User
Manual), and if not found, in the data sub-directory of the MCSTAS library location.
This way, you do not need to have local copies of the McStas Library Data files (see

table .

A usage example for this library part may be:

1 t-Table Table; // declare a t_-Table structure

2| char file[]="BeO.trm”; // a file name

3 double x,y;

4

5 Table_Read(&Table, file, 1); // initialize and read the first numerical
block

6 Table_Info (Table); // display table informations

7

8| x = Table_Index(Table, 2,5); // read the 3rd row, 6th column element

9 // of the table. Indexes start at zero in C

10| y = Table_Value(Table, 1.45,1); // look for walue 1.45 in 1st column (z
azxis)

11 // and extract 2nd column wvalue of that row

Table_Free(&Table) ; // free allocated memory for table

12

Additionally, if the block number (3rd) argument of Table_Read is 0, all blocks will be
concatenated. The Table_Value function assumes that the ’x’ axis is the first column
(index 0). Other functions are used the same way with a few additional parameters, e.g.
specifying an offset for reading files, or reading binary data.

This other example for text files shows how to read many data blocks:

1 t_Table xTable; // declare a t_-Table structure array
2 long n;

151

double y;

Table = Table_Read_Array (” file .dat”, &n); // initialize and read the all
numerical block

n = Table_Info_Array (Table); // display informations for all blocks (
also returns n)

y = Table_Index(Table[0], 2,5); // read in 1st block the 8rd row, 6th
column element

// ONLY use Table[i] with i < n !
Table_Free_Array (Table) ; // free allocated memory for Table

You may look into, for instance, the source files for Monochromator_curved or
Virtual_input for other implementation examples.

B.3. Monitor_nD Library

This library gathers a few functions used by a set of monitors e.g. Monitor_nD, Res_monitor,
Virtual_output, etc. It may monitor any kind of data, create the data files, and may dis-
play many geometries (for mcdisplay). Refer to these components for implementation
examples, and ask the authors for more details.

B.4. Adaptive importance sampling Library

This library is currently only used by the components Source_adapt and Adapt_check.
It performs adaptive importance sampling of neutrons for simulation efficiency optimiza-
tion. Refer to these components for implementation examples, and ask the authors for
more details.

B.5. Vitess import/export Library

This library is used by the components Vitess_input and Vitess_output, as well as
the mcstas2vitess utility. Refer to these components for implementation examples,
and ask the authors for more details.

B.6. Constants for unit conversion etc.

The following predefined constants are useful for conversion between units

152

Name Value Conversion from Conversion to
DEG2RAD 27/360 Degrees Radians
RAD2DEG 360/(2m) Radians Degrees
MIN2RAD 27/(360 - 60) Minutes of arc Radians
RAD2MIN (360 -60)/(2m) | Radians Minutes of arc
V2K 1019 - my /A Velocity (m/s) k-vector (A1)
K2V 10719 a/my k-vector (A~1) Velocity (m/s)
VS2E mn/(2e) Velocity squared (m? s~2) | Neutron energy
(meV)
SE2V \ 2e/mn Square root of neutron | Velocity (m/s)
energy (meV?'/?)
FWHM2RMS 1/+/8log(2) Full width half maximum | Root mean square
(standard deviation)
RMS2FWHM 8log(2) Root mean square (stan- | Full width half maxi-
dard deviation) mum
MNEUTRON | 1.67492 - 10727 kg | Neutron mass, my,
HBAR 1.05459 - 1073* Js | Planck constant, &
PI 3.14159265... us
FLT_MAX 3.40282347E+38F | a big float value

153

C.

The McStas terminology

This is a short explanation of phrases and terms which have a specific meaning within
McStas. We have tried to keep the list as short as possible with the risk that the reader
may occasionally miss an explanation. In this case, you are more than welcome to
contact the McStas core team.

154

Arm A generic McStas component which defines a frame of reference for other
components.

Component One unit (e.g. optical element) in a neutron spectrometer. These are
considered as Types of elements to be instantiated in an Instrument description.

Component instance A named Component (of a given Type) inserted in an
Instrument description.

Definition parameter An input parameter for a component. For example the
radius of a sample component or the divergence of a collimator.

Input parameter For a component, either a definition parameter or a setting
parameter. These parameters are supplied by the user to define the characteris-
tics of the particular instance of the component definition. For an instrument, a
parameter that can be changed at simulation run-time.

Instrument An assembly of McStas components defining a neutron spectrometer.
Kernel The McStas meta-language definition and the associated compiler mcstas.

McStas Monte Carlo Simulation of Triple Axis Spectrometers (the name of this
package). Pronunciation ranges from mez-tas, to mac-stas and m-c-stas.

Output parameter An output parameter for a component. For example the
counts in a monitor. An output parameter may be accessed from the instrument
in which the component is used using MC_GETPAR.

Run-time C code, contained in the files mcstas-r.c and mcstas-r.h included in
the McStas distribution, that declare functions and variables used by the generated
simulations.

Setting parameter Similar to a definition parameter, but with the restriction
that the value of the parameter must be a number.

Bibliography

[BacT75]

[Bla83]
[Cla+98]

[CopT4]

[Cop93]
[Cus03]
[DLO3]

[Ege67]

[FMW72]

See http://www.mcstas.org (cit. on pp. .
See https://github.com/mccode-dev/McCode/issues| (cit. on pp. .

See http://neutron-eu.net/en (cit. on p. .

See http://mcnsi.risoe.dk (cit. on p. [10).

See http://ts-2.isis.rl.ac.uk (cit. on p. [10).

See http://www.ess-europe.de (cit. on p. .

See http://sine2020.eu (cit. on p. .

ICSD, Inorganic Crystal Structure Database. See http://icsd. ill. fr
(cit. on pp. .

See http://www.nea.fr/html/dbprog/tripoli-abs.html (cit. on p. .
See http://mcnpx.lanl.gov and http://mcnp.lanl.gov] (cit. on p. [39).
See http://www.hmi.de/projects/ess/vitess (cit. on p.39).
Crystallographica, Oxford Cryosystem, 1998. See http : / / www .
crystallographica.com (cit. on p. .

Fullprof powder refinement. See http://www-11b.cea.fr/fullweb/fp2k/
£p2k.htm (cit. on p. [93)).

G.E. Bacon. Neutron Diffraction. Oxford University Press, 1975 (cit. on
pp- 7).

Y. Blanc. In: ILL Report 83BL21G (1983) (cit. on p. [59).

K. N. Clausen et al. “The RITA spectrometer at Risg - design considerations
and recent results”. In: Physica B 241-243 (1998), pp. 50-55 (cit. on p. [46)).

J.R.D Copley. In: Comput. Phys. Commun. 7 (1974), p. 289 (cit. on pp. [100
1041 [106).

J.R.D. Copley. In: J. Neut. Research 1 (1993), p. 21 (cit. on p. .
L. D. Cussen. In: J. Appl. Cryst. 36 (2003), p. 1204 (cit. on p. [117).

A.-J. Dianoux and G. Lander. ILL Neutron Data Booklet. OCP Science, 2003
(cit. on pp. 104)).

P.A. Egelstaff. An introduction to the liquid state. Academic Press, London,
1967 (cit. on p. [102)).

Bischoff FG, Yeater ML, and Moore WE. In: Nuclear Science and Engineer-
ing 48 (1972), p. 266 (cit. on pp. 100}, [103] {104} [L06]).

155

http://www.mcstas.org
https://github.com/mccode-dev/McCode/issues
http://neutron-eu.net/en
http://mcnsi.risoe.dk
http://ts-2.isis.rl.ac.uk
http://www.ess-europe.de
http://sine2020.eu
http://icsd.ill.fr
http://www.nea.fr/html/dbprog/tripoli-abs.html
http://mcnpx.lanl.gov
http://mcnp.lanl.gov
http://www.hmi.de/projects/ess/vitess
http://www.crystallographica.com
http://www.crystallographica.com
http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm
http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm

[Far+02]
[FBS06]

[GRR92]

[Jam80)]
[Johrc]

[LN99]
[Lie05]
[Lovs4]
[MPC77)
[Pre+86]
[Pre+02]

[Sch+04]
[SeaT5]
[SDO1]

[Squ7§]

[Wil+14]

[Wil+05]

[Wil8s]

[ZLa04]

156

E. Farhi et al. In: Appl. Phys. A 74 (2002), S1471 (cit. on p. [18).

H.E. Fischer, A.C. Barnes, and P.S. Salmon. In: Rep. Prog. Phys. 69 (2006),
p. 233 (cit. on p. [102)).

Grimmett, G. R., and Stirzakerand D. R. Probability and Random Processes,
2nd Edition. Clarendon Press, Oxford, 1992 (cit. on p. .

F. James. In: Rep. Prog. Phys. 43 (1980), p. 1145 (cit. on pp. .
M.W. Johnson. In: Harwell report AERE - R 7682 (March 1974) (cit. on
pp- 106).

K. Lefmann and K. Nielsen. “McStas, a general software package for neutron
ray-tracing simulations”. In: Neutron News 10 (1999), pp. 20-23. DOI: 10.
1080/10448639908233684/ (cit. on p. [L0).

K. Lieutenant. In: J. Phys.: Condens. Matter 17 (2005), S167 (cit. on p.[L8).

S.W. Lovesey. Theory of neutron scattering from condensed matter. Oxford
Clarendon Press, 1984 (cit. on pp. {133} [136} (137 [139)).

D.F.R. Mildner, C.A. Pellizari, and J.M. Carpenter. In: Acta. Cryst. A 33
(1977), p. 954 (cit. on p.|104).

W. H. Press et al. Numerical Recipes in C. Cambridge University Press, 1986
(cit. on p. [149)).

W.H. Press et al. Numerical Recipes (2nd Edition). Cambridge University
Press, 2002 (cit. on p. .

C. Schanzer et al. In: Nucl. Instr. Meth. A 529 (2004), p. 63 (cit. on p. [18).
V.F. Sears. In: Adv. Phys. 24 (1975), p. 1 (cit. on p.[103).

P. A. Seeger and L. L. Daemen. “Numerical Solution of Bloch’s Equation for
Neutron Spin Precession”. In: Nucl. Instr. Meth. 457 (2001), p. 338 (cit. on

pp. 142).

G.L. Squires. Thermal Neutron Scattering. Cambridge University Press, 1978
(cit. on pp. 107)).

Peter Kjeer Willendrup et al. “McStas: Past, present and future”. In: Journal

of Neutron Research 17.1 (2014), pp. 35-43. 1SsN: 1023-8166. DOI: 10.3233/
JNR-130004 (cit. on p. [10)).

Peter Willendrup et al. User and Programmers Guide to the Neutron Ray-
Tracing Package McStas, Version 1.9. Risoe Report, 2005 (cit. on pp.

).
W. Gavin Williams. Polarized Neutrons. Oxford Clarendon Press, 1988 (cit.
on pp. 139).

G. Zsigmond, K. Lieutenant, and S. Manoshin et al. In: Nucl. Instr. Meth.
A 529 (2004), p. 218 (cit. on p. [L8).

https://doi.org/10.1080/10448639908233684
https://doi.org/10.1080/10448639908233684
https://doi.org/10.3233/JNR-130004
https://doi.org/10.3233/JNR-130004

Index

%include (McStas keyword),

ABSORB (C macro, mcstas-r.h),
adapt_tree-lib (library), [152

Adaptive sampling,

ALLOW_BACKPROP (C macro, mcstas-r.h),

Arm,

box_intersect (C function, mccode-r.c),

Bugs, [[7}, 51} B2} [05]

C functions, [T44]
Coherent and incoherent isotropic
scatterer, [99]
Component,
instance,
Concentric components, @

Constants, [152]

Conversion
of units, [152
Coordinate
retrieval functions,
system, [I3]

coords_add (C function, mccode-r.c),
coords_get (C function, mccode-r.c),
coords_set (C function, mccode-r.c),
cylinder_intersect (C function,

mccode-r.c), (14§

Data files, [13]

Definition parameter,

DEG2RAD (constant), [153

DETECTOR_OUT_OD (C macro, mccode-r.h),
149

DETECTOR_OUT_1D (C macro, mccode-r.h),

DETECTOR_OUT_2D (C macro, mccode-r.h),

DETECTOR_OUT_3D (C macro, mccode-r.h),
Diffraction, [80} [85} [04]

Direction focusing,

Environment variable
BROWSER,
MCSTAS, [14]

Environment variables
MCSTAS, [T44), [T5]]

Error estimate, [I9]

EXTEND (McStas keyword),

FLT_MAX (constant), (153
Focusing

importance sampling,
FWHM2RMS (constant), [153

GROUP (McStas keyword),
HBAR (constant), (153

Importance sampling

direction focusing,
Incoherent elastic scattering,
Incoherent inelastic scattering, [79]
INDEX_CURRENT_COMP (C macro,

mccode-1.h),
Inelastic scattering, [96] [99]

Input parameter,
inside_rectangle (C function,

mestas-r.c), [148
Instrument,

K2V (constant), [153
Kernel,
Keyword

EXTEND, T4, P4 [124)
OUTPUT PARAMETERS,

Library, [144]
adapt_tree-lib,
Components

data,
misc, [127]
monitors, [[14]
optics, [0} [55]

157

samples, [74]
sources, [24]
components

data, [15]]

share, [[44]
mccode-r, [144]
mestas-r, [144]
monitor_nd-lib,
read_table-lib,
read_table-lib (Read_Table),
Run-time

MC_GETPAR,
run-time, [144]
vitess-lib,

MC_GETPAR (C macro, mccode-r.h),
mccode-r (library),|144

MCDISPLAY (McStas keyword),
MCNP, [B9]

MCSTAS (environment variable),
McStas

name, [I54]
pronunciation, [I54]
mestas-r (library), (144
mcstas2vitess (McStas tool),
MIN2RAD (constant),
MNEUTRON (constant),
monitor_nd-lib (library),
Monitors,
Adaptive importance sampling
monitor, [35]
Banana shape, [121
Beam analyzer,
Capture flux, [120]
Custom monitoring (user variables,
Monitor_.nD),
Divergence monitor, [T10]
Divergence/position monitor,
Energy monitor, [[15]
Neutron parameter correlations,
PreMonitor_nD, [125]
Number of neutron bounces in a guide,
124
Position sensitive detector (PSD),
Position sensitive monitor recording
mean energy, [[23]
Resolution monitor, see
Samples/Resolution function
The All-in-One monitor (Monitor_nD),
113

158

Time-of-flight monitor, [115
TOF2E monitor, [115
Wavelength monitor, [L16
Monte Carlo method,
accuracy, [22]
adaptive sampling, 2]
direction focusing, [2]
stratified sampling, 2]
Multiple scattering, [85] 09|

NAME_CURRENT_COMP (C macro, mccode-r.h),

243
NORM (C macro, mecode-r.h),

normal _vec (C function, mccode-r.c),

Optics, [486]

Beam stop, [A]

Bender (non polarizing),

Curved guides (polygonal model),

Disc chopper,

Fermi Chopper,

Filter,

Guide with channels (straight, non
focusing),

Guide with channels and gravitation
handling (straight),

Linear collimator, [£3]

Mirror plane, [40]

Monochromator, [68|

Monochromator, curved, [71]

Monochromator, thick,

phase space transformer,

Point in space (Arm, Optical bench),
40)

Radial collimator,

Slit, [40]

Straight guide,

Velocity selector,

Optimization,
Output parameter,

PI (constant), 153

POS_A_COMP (C macro, mccode-r.h),

POS_A_COMP_INDEX (C macro, mccode-r.h),
140,

POS_A_CURRENT_COMP (C macro,

mccode-1.h),
POS_R_COMP_INDEX (C macro, mccode-r.h),

Preprocessor macros, [144]

PROP_DT (C macro, mcstas-r.h),
PROP_GRAV.DT (C macro, mcstas-r.h),
PROP_Z0 (C macro, mcstas-r.h),

RAD2DEG (constant), [153
RAD2MIN (constant), [153
rand01 (C function, mccode-r.c),

randtriangle (C function, mccode-r.c),
(49
randvec_target_circle (C function,
mccode-1.¢), (149
randvec_target_rect (C function,
mccode-1.¢), (149
randvec_target_rect_angular (C
function, mccode-r.c), |149
read_table-lib (library),
Removed neutron events,
RESTORE_NEUTRON (C macro, mestas-r.h),
RMS2FWHM (constant), (153
ROT_A_COMP (C macro, mccode-r.h),
ROT_A_CURRENT_COMP (C macro,
mccode-r.h),
rot_apply (C function, meccode-r.c),
rot_copy (C function, mccode-r.c),
rotmul (C function, mccode-r.c),
ROT_R_COMP (C macro, mccode-r.h),
ROT_R_CURRENT_COMP (C macro,

mccode-r.h),

rot_set_rotation (C function,

mccode-1.¢),

rot_transpose (C function, mccode-r.c),

(247
rotate (C macro, mccode-r.h),
Run-time,

Sample environments,
Samples,
Coherent and incoherent isotropic
scatterer, [09]
Dilute colloid medium, [94]
Incoherent inelastic scatterer,
Incoherent isotropic scatterer
(Vanadium),
Phonon scattering,
Powder, multiple diffraction line,
Resolution function, sample for, [129]
Single crystal diffraction, [85]

Sampling,

scalar_prod (C function, mccode-r.c),
SCATTER (C macro, mcstas-r.h), |145] [146
SCATTERED (C macro, mccode-r.h),
SE2V (constant), [153]

Setting parameter,

SHARE (McStas keyword),

Simulation progress bar, [132]

Small angle scattering, [94]
solve_2nd_order (C function, mccode-r.c),

[247
Sources,

Adaptive importance sampling
monitor, [35]

Adaptive source,

Continuous source with a Maxwellian
spectrum, [26]

Continuous source with specified
divergence,

from 1D table input, [£I]

General continuous source,

ISIS pulsed moderators,

Optimization location, see
Sources/Optimizer

Optimizer, [36]

Simple continuous source,

Time of flight pulsed moderator, 28|

Virtual source from stored neutron

events, [[2§

Virtual source, recording neutron

events, [[2§]

sphere_intersect (C function,
mccode-r.c), [14§
Statistics
uncertainty, [T9]
STORE_NEUTRON (C macro, mcstas-r.h), |146
Stratified sampling,

Symbols,

Table Free (C function, read_table-lib.c),
Table_Free_Array (C function,

read_table-lib.c),

Table_Index (C function, read_table-lib.c),
Table_Info (C function, read_table-lib.c),
Table_Info_Array (C function,

read_table-lib.c),

159

Table_Init (C function, read_table-lib.c),

Table Read (C function, read_table-lib.c),

Table Read_Array (C function,
read_table-lib.c),

Table_Read Offset (C function,
read_table-lib.c),

Table Read Offset Binary (C function,
read_table-lib.c),

Table Rebin (C function, read_table-lib.c),

Table _Value (C function, read_table-lib.c),
o0

Table_Value2d (C function,

read_table-lib.c),
Tools

160

mecdoc,
Tripoli,

Units
constants and conversions,

V2K (constant), [153

Variance, [I9]

Variance reduction,

vec_prod (C function, mccode-r.c),
Virtual sources, 22]

Vitess, B9

vitess-lib (library), [152
VS2E (constant), [153
Weight,

statistical uncertainty,
transformation,

	Preface and acknowledgements
	About the component library
	Authorship
	Symbols for neutron scattering and simulation
	Component coordinate system
	About data files
	Component source code
	Documentation
	Component validation
	Disclaimer, bugs

	Monte Carlo Techniques and simulation strategy
	Neutron spectrometer simulations
	Monte Carlo ray tracing simulations

	The neutron weight
	Statistical errors of non-integer counts

	Weight factor transformations during a Monte Carlo choice
	Direction focusing

	Adaptive and Stratified sampling
	Accuracy of Monte Carlo simulations

	Source components
	Neutron flux
	Source_simple: A simple continuous source with a flat energy/wavelength spectrum
	Source_div: A continuous source with specified divergence
	Source_Maxwell_3: A continuous source with a Maxwellian spectrum
	Source_gen: A general continuous source
	Moderator: A time-of-flight source (pulsed)
	ISIS_moderator: ISIS pulsed moderators
	Introduction
	Using the McStas Module
	Comparing TS1 and TS2
	Bugs

	Source_adapt: A neutron source with adaptive importance sampling
	Optimization disclaimer
	The adaption algorithm
	The implementation

	Adapt_check: The adaptive importance sampling monitor
	Source_Optimizer: A general Optimizer for McStas
	The optimization algorithm
	Using the Source_Optimizer

	Monitor_Optimizer: Optimization locations for the Source_Optimizer
	Other sources components: contributed pulsed sources, virtual sources (event files)

	Beam optical components: Arms, slits, collimators, and filters
	Arm: The generic component
	Slit: A beam defining diaphragm
	Beamstop: A neutron absorbing area
	Filter_gen: A general filter using a transmission table
	Collimator_linear: The simple Soller blade collimator
	Collimator transmission
	Algorithm

	Collimator_radial: A radial Soller blade collimator

	Reflecting optical components: mirrors, and guides
	Mirror: The single mirror
	Mirror reflectivity
	Algorithm

	Guide: The guide section
	Guide geometry and reflection
	Algorithm

	Guide_channeled: A guide section component with multiple channels
	Algorithm
	Known problems

	Guide_gravity: A guide with multiple channels and gravitation handling
	Bender: a bender model (non polarizing)
	Curved guides

	Moving optical components: Choppers and velocity selectors
	DiskChopper: The disc chopper
	FermiChopper: The Fermi-chopper
	The chopper geometry and parameters
	Propagation in the Fermi-chopper

	Vitess_ChopperFermi: The Fermi Chopper from Vitess
	V_selector: A rotating velocity selector
	Velocity selector transmission

	Selector: another approach to describe a rotating velocity selector

	Monochromators
	Monochromator_flat: An infinitely thin, flat mosaic crystal with a single scattering vector
	Monochromator physics and algorithm

	Monochromator_curved: A curved mosaic crystal with a single scattering vector
	Single_crystal: Thick single crystal monochromator plate with multiple scattering
	Phase space transformer - moving monochromator

	Samples
	Neutron scattering notation
	Weight transformation in samples; focusing
	Future development of sample components
	Incoherent: An incoherent scatterer, the V-sample
	Physics and algorithm
	Remark on functionality

	Tunneling_sample: An incoherent inelastic scatterer
	PowderN: A general powder sample
	Files formats: powder structures
	Geometry, physical properties, concentricity
	Powder scattering
	Algorithm

	Single_crystal: The single crystal component
	The physical model
	The algorithm
	Choosing the outgoing wave vector
	Computing the total coherent cross-section
	Implementation details

	Sans_spheres: A sample of hard spheres for small-angle scattering
	Small-angle scattering cross section
	Algorithm
	Calculating the weight factor

	Phonon_simple: A simple phonon sample
	The phonon cross section
	The algorithm
	The weight transformation

	Isotropic_Sqw: A general S(q,) coherent and incoherent scatterer
	Neutron interaction with matter - overview
	Theoretical side
	Theoretical side - scattering in the sample
	The implementation
	Validation

	Monitors and detectors
	TOF_monitor: The time-of-flight monitor
	TOF2E_monitor: A time-of-flight monitor with simple energy analysis
	E_monitor: The energy-sensitive monitor
	L_monitor: The wavelength sensitive monitor
	PSD_monitor: The PSD monitor
	Divergence_monitor: A divergence sensitive monitor
	DivPos_monitor: A divergence and position sensitive monitor
	Monitor_nD: A general Monitor for 0D/1D/2D records
	The Monitor_nD geometry
	The neutron parameters that can be monitored
	Important options
	The output files
	Monitor equivalences
	Usage examples
	Monitoring user variables
	Monitoring neutron parameter correlations, PreMonitor_nD

	Special-purpose components
	Virtual_output: Saving the first part of a split simulation
	Virtual_input: Starting the second part of a split simulation
	Res_sample: A sample-like component for resolution calculation
	TOF_Res_sample: A sample-like component for TOF resolution calculation
	Res_monitor: The monitor for resolution calculation
	Progress_bar: Simulation progress and automatic saving
	Beam_spy: A beam analyzer

	Polarization in McStas
	Introduction
	The Polarization Vector
	Example: Magnetic fields

	Polarized Neutron Scattering
	Example: Nuclear scattering
	Example: Polarizing Monochromator and Guides

	New McStas Components
	Polarizers
	Detectors
	Magnetic fields
	Samples

	Tests With New Components

	Libraries and constants
	Run-time calls and functions (mcstas-r)
	Neutron propagation
	Coordinate and component variable retrieval
	Coordinate transformations
	Mathematical routines
	Output from detectors
	Ray-geometry intersections
	Random numbers

	Reading a data file into a vector/matrix (Table input, read_table-lib)
	Monitor_nD Library
	Adaptive importance sampling Library
	Vitess import/export Library
	Constants for unit conversion etc.

	The McStas terminology
	Bibliography
	Index and keywords

