/******************************************************************************* * * McStas, neutron ray-tracing package * Copyright (C) 1997-2006, All rights reserved * Risoe National Laboratory, Roskilde, Denmark * Institut Laue Langevin, Grenoble, France * * Component: Virtual_mcnp_input.comp * * %I * Written by: Chama Hennane and E. Farhi * Date: June 28th, 2006 * Origin: ILL * Modified by: EF, July 25th 2006: bug fixes. * * This component uses a filename of recorded neutrons from the reactor monte carlo * code MCNP as a source of particles. * * %D * This component generates neutron events from a filename created using the * MCNP Monte Carlo code for nuclear reactors. It is used to * calculate flux exiting from hot or cold neutron sources. * Neutron position and velocity is set from the filename. The neutron time is * left at zero. * * Note that axes orientation may be different between MCNP and McStas. * The component has the ability to center and orient the neutron beam to the Z-axis. * It also may change the coordinate system from the MCNP frame to the McStas one. * The verbose mode is highly recommended as it displays lots of useful informations. * To obtain absolute intensity, set 'intensity' and 'nps' parameters. * The source total intensity is 1.054e18 for LLB/Saclay (14 MW) and 4.28e18 for * ILL/Grenoble (58 MW). * * Format of MCNP events are : * * position_X position_Y position_Z dir_X dir_Y dir_Z Energy Weight Time * * energy is in Mega eV, time in shakes (1e-8 s), * positions are in cm and the direction vector is normalized to 1. * * %BUGS * We recommend NOT to use parallel execution (MPI) with this component. If you * need to, set parameter 'smooth=1'. * * EXAMPLE: * To generate PTRAC files using MCNP/MCNPX, add at the end of your input file: * f1:n 2001 // tally * (...) * ptrac filename = asc * max = -1000000 // number of neutrons to generate and stop * write = all * event = sur * filter = 2001,jsu // surface tally id * To create a 'source' from a MCNP simulation event file for the ILL: * COMPONENT source = Virtual_mcnp_input( * filename = "H10p", intensity=4.28e18, nps=11328982, * verbose = 1, autocenter="translate rotate rescale") * * %P * INPUT PARAMETERS * filename: [str] Name of the MCNP PTRAC neutron input file. Empty string "" unactivates component * repeat_count: [1] Number of times the source must be generated. 0 unactivates the component * verbose: [0|1] Displays additional informations if set to 1 * intensity: [n/s] Intensity multiplication factor * nps: [1] Number of total events shot by MCNP to generate the PTRAC as indicated at the end of the MCNP 'o' file as 'source particle weight for summary table normalization' or alternatively 'nps = '. * autocenter: [str] String which may contain following keywords. "translate" or "center" to center the beam area AT (0,0,0) "rotate" or "orient" to center the beam velocity along Z "change axes" to change coordinate system definition "rescale" to adapt intensity to abs. units. with factor intensity/nps. Other words are ignored. * surface_id: [1] Index of the emitting MCNP surface to use. -1 for all. * MCNP_ANALYSE: [1] Number of neutron events to read for file pre-analysis. Use 0 to analyze them all. * smooth: [0/1] Smooth sparsed event files for file repetitions. * * OUTPUT PARAMETERS * head: [char] header buffer * nl: [long] nb of lines in header * mean_x: [m] source center coordinates * mean_y: [m] source center coordinates * mean_z: [m] source center coordinates * angle2z: [rad] rotation angle required to orient beam along Z axis * * %L * MCNP * %L * MCNP -- A General Monte Carlo N-Particle Transport Code, Version 5, Volume II: User's Guide, p177 * * %E * *******************************************************************************/ DEFINE COMPONENT Virtual_mcnp_input DEFINITION PARAMETERS () SETTING PARAMETERS (string filename=0, string autocenter=0, repeat_count=1, verbose=0, intensity=0,MCNP_ANALYSE=10000, int surface_id=-1, nps=0,smooth=1) OUTPUT PARAMETERS (hfile,head,rep,begin_neutrons,do_rotate,do_translate, bx,by,bz,angle2z,mean_x, mean_y, mean_z, old_surface,surface,informed_event,informed_surface, min_x, min_y, min_z, max_x , max_y , max_z , min_vx, min_vy, min_vz, max_vx, max_vy, max_vz, mean_dx, mean_dy, mean_dz, n_count_extrapolated, repeat_cnt) /* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ SHARE %{ #ifndef MCNP_INPUT_DEFS #define MCNP_INPUT_DEFS /* number of neutron events to read for file pre-analysis */ #include /* mcnp_get_particle: read a neutron event from the MCNP PTRAC file */ int mcnp_get_particle(FILE *hfile,float * tableau,int *old_surface,int *surface_id,int *informed_event,int *informed_surface) { char *c; int exit_flag=0; float arg1=-1; float arg2=-1; float arg3=-1; float arg4=-1; float arg5=-1; float arg6=-1; float arg7=-1; float arg8=-1; float arg9=-1; int count=-1; int new_surface=-1; char str[1024]; int serr=0; if (!tableau) exit(fprintf(stderr, "MCNP_input: Error in mem alloc (mcnp_get_particle).\n")); c=fgets(str,1024,hfile); while (c!=NULL) { count=sscanf(str,"%e %e %e %e %e %e %e %e %e",&arg1,&arg2,&arg3,&arg4,&arg5,&arg6,&arg7,&arg8,&arg9); if (count==2) { /* test number of numerical values read from line */ if(arg2!=3000 && arg2!=9000){ printf("Warning: Unknown event %g in current file\n",arg2); } else if (informed_event) *informed_event = arg2; } else if (count==7 || count==6) { new_surface=arg3; if (new_surface!=*surface_id && *surface_id!=-1) serr=1; else *informed_surface=new_surface; if (*old_surface!=-1 && !*informed_surface && new_surface!=*old_surface) { printf("Warning: Different surface IDs in current file: previous=%i current=%i\n", *old_surface, new_surface); } *old_surface =new_surface; } else if (count==9 && (!informed_surface || *informed_surface) && (!informed_event || (informed_event && (*informed_event==3000 || *informed_event==9000)))) { if(serr==0){ tableau[0]=arg1; tableau[1]=arg2; tableau[2]=arg3; tableau[3]=arg4; tableau[4]=arg5; tableau[5]=arg6; tableau[6]=arg7; tableau[7]=arg8; tableau[8]=arg9; return (exit_flag); } serr=0; } else { if (informed_event && *informed_event) { exit_flag=1; printf("MCNP_input: Warning: skip line %s\n", str); return (exit_flag); } } c=fgets(str,1024,hfile); } exit_flag=1; return (exit_flag); } /* mcnp_create_neutron: function that creates an event and assigns neutron parameters. Warning: mcnp Coord system (x y z) = (-x z y) */ int mcnp_create_neutron(FILE *hfile, double *x,double *y,double *z, double *vx, double *vy, double *vz, double *t, double *sx, double *sy, double *sz, double *p,int *old_surface,int *surface_id,int *informed_event, int *informed_surface) { double Mev2Joule=1.602e-13; double speed; int exit_flag=0, ifield=0; float field[9]; if(mcnp_get_particle(hfile,field,old_surface,surface_id,informed_event,informed_surface)) { exit_flag=1; } else { speed=sqrt(2.* field[6]*Mev2Joule/MNEUTRON); *x=field[0]/100.0; *y=field[1]/100.0; *z=field[2]/100.0; *vx=field[3]*speed; *vy=field[4]*speed; *vz=field[5]*speed; *p=field[7]; *sx=1.;*sy=*sz=0; *t=field[8]*1e-8; // now change axis system double tx, ty, tz; tx=*x; ty=*y; tz=*z; *x=-ty; *y=-tz; *z=tx; tx=*vx; ty=*vy; tz=*vz; *vx=-ty; *vy=-tz; *vz=tx; } return (exit_flag); } /* mcnp_get_header: function that gets/allocate header lines until the MCNP start of data */ char *mcnp_get_header(FILE *hfile) { int i; char *head=NULL; char buffer[1024]; char *c=NULL; c=fgets(buffer,1024,hfile); head=malloc(2*1024+1); if (!head) exit(fprintf(stderr, "MCNP_input: Error in mem alloc (mcnp_get_header).\n")); strcpy(head,""); c=fgets(buffer,1024,hfile); strcat(head, buffer); c=fgets(buffer,1024,hfile); strcat(head, buffer); /* skip 6 lines */ for (i=0; i<=6; i++) c=fgets(buffer,1024,hfile); return head; } #endif %} DECLARE %{ int rep; /* Neutron repeat count */ int repeat_cnt; /* Repeat count, MPI taken into account */ FILE *hfile; /* Neutron input file handle */ char do_rotate, do_translate; double mean_x, mean_y, mean_z; double bx,by,bz; double angle2z; long begin_neutrons; int old_surface; int surface; int informed_event; int informed_surface; double n_count_extrapolated; double min_x, min_y, min_z; double max_x, max_y, max_z; double min_vx, min_vy, min_vz; double max_vx, max_vy, max_vz; double mean_dx, mean_dy, mean_dz; %} INITIALIZE %{ rep=1; do_rotate=0; do_translate=0; mean_x=0; mean_y=0; mean_z=0; angle2z=0; begin_neutrons=0; old_surface=-1; informed_event=0; informed_surface=0; n_count_extrapolated=0; min_x=FLT_MAX; min_y=FLT_MAX; min_z=FLT_MAX; max_x=-FLT_MAX; max_y=-FLT_MAX; max_z=-FLT_MAX; min_vx=FLT_MAX; min_vy=FLT_MAX; min_vz=FLT_MAX; max_vx=-FLT_MAX; max_vy=-FLT_MAX; max_vz=-FLT_MAX; mean_dx=0; mean_dy=0; mean_dz=0; char exit_flag=0; /* set to 1 if end of simulation */ double mean_vx=0, mean_vy=0, mean_vz=0, mean_v=0; double n_neutrons=0; double n_neutrons_p=0; long filesize =0; char *head=NULL; /*MCNP header*/ struct stat stfile; surface=surface_id; /* Open neutron input file. */ /* (If empty file given, present warning in case of verbose, perform nothing) */ if (!filename || !strcmp(filename,"") || !strcmp(filename,"0") || !strcmp(filename,"NULL")) exit(printf("MCNP_input: %s: Empty file given, doing nothing!. Stop.\n", NAME_CURRENT_COMP)); if (filename && strlen(filename) && strcmp(filename, "NULL") && strcmp(filename, "0")) { stat(filename,&stfile); filesize = stfile.st_size; hfile = fopen(filename, "r"); } if(!hfile) { exit(printf("MCNP_input: %s: Error: Cannot open input file %s.\n", NAME_CURRENT_COMP, filename)); } else if (verbose) printf("MCNP_input: %s: opening MCNP/PTRAC file '%s'\n", NAME_CURRENT_COMP, filename); head = mcnp_get_header(hfile); /* and reset to filename start */ begin_neutrons = ftell(hfile); if (verbose) fprintf(stdout, "%s\n", head); if (head) free(head); head=NULL; if (verbose) { printf("Analysing MCNP file %s (", filename); if (MCNP_ANALYSE) printf("%g events)\n", MCNP_ANALYSE); else printf("all events)\n"); } /* analyse MCNP file: count neutrons, get beam center and mean speed * do that for the first 1e4 neutrons, and extrapolates to file size */ while (!exit_flag && (n_neutrons <= MCNP_ANALYSE || !MCNP_ANALYSE)) { double x,y,z,vx,vy,vz,t,p,sx,sy,sz; if (mcnp_create_neutron( hfile,&x,&y,&z,&vx,&vy,&vz,&t,&sx,&sy,&sz,&p, &old_surface,&surface,&informed_event,&informed_surface)) { /*END OF FILE*/ fprintf(stderr, "MCNP_input: %s: Cannot get neutron %g : Error or End of File reached .\n",NAME_CURRENT_COMP,n_neutrons+1); exit_flag = 1; } else { double v; v = sqrt(vx*vx+vy*vy+vz*vz); mean_x += p*x; mean_y += p*y; mean_z += p*z; mean_vx += p*vx; mean_vy += p*vy; mean_vz += p*vz; mean_v += p*v; angle2z += p*vz/v; if (v) { mean_dx += p*fabs(vx/v); mean_dy += p*fabs(vy/v); mean_dz += p*fabs(vz/v); } if (x < min_x) min_x = x; if (y < min_y) min_y = y; if (z < min_z) min_z = z; if (vx < min_vx) min_vx = vx; if (vy < min_vy) min_vy = vy; if (vz < min_vz) min_vz = z; if (x > max_x) max_x = x; if (y > max_y) max_y = y; if (z > max_z) max_z = z; if (vx > max_vx) max_vx = vx; if (vy > max_vy) max_vy = vy; if (vz > max_vz) max_vz = z; n_neutrons++; n_neutrons_p += p; } } /* end while */ if (n_neutrons) { long end_analyse=0; double cx,cy,cz; end_analyse = ftell(hfile); mean_x /= n_neutrons_p; mean_y /= n_neutrons_p; mean_z /= n_neutrons_p; mean_vx /= n_neutrons_p; mean_vy /= n_neutrons_p; mean_vz /= n_neutrons_p; mean_dx /= n_neutrons_p; mean_dy /= n_neutrons_p; mean_dz /= n_neutrons_p; mean_v /= n_neutrons_p; angle2z /= n_neutrons_p; n_count_extrapolated = n_neutrons*(filesize-begin_neutrons)/(end_analyse - begin_neutrons); if (verbose) { double mean_k, mean_w=0, mean_L=0; mean_k = V2K*mean_v; if (mean_k) mean_L = 2*PI/mean_k; mean_w = VS2E*mean_v*mean_v; printf("MCNP file %s\nContains %s%g neutrons from surface %i with event %i\n", filename, MCNP_ANALYSE ? "about " : "", n_count_extrapolated, informed_surface, informed_event); if (n_count_extrapolated > mcget_ncount()) printf(" (will use only %.3g %% of file)\n", 100.0*mcget_ncount()/n_count_extrapolated); else printf(" (limiting simulation to %g neutrons)\n", n_count_extrapolated*repeat_count); printf(" Source size (full width in [m]): "); printf(" dX=%g dY=%g dZ=%g\n", max_x-min_x, max_y-min_y, max_z-min_z); printf(" Source center (in [m]): "); printf(" X0=%g Y0=%g Z0=%g\n", mean_x, mean_y, mean_z); printf(" Beam divergence (full width in [deg]):"); printf(" dVx=%g dVy=%g dVz=%g\n", atan(mean_dx)*RAD2DEG, atan(mean_dy)*RAD2DEG, atan(mean_dz)*RAD2DEG); printf(" Beam speed (in [m/s]): "); printf(" Vx=%g Vy=%g Vz=%g\n", mean_vx, mean_vy, mean_vz); printf(" Beam mean energy:\n"); printf(" speed=%g [m/s] energy=%g [meV]\n wavelength=%g [Angs] wavevector=%g [Angs-1]\n", mean_v, mean_w, mean_L, mean_k); } if (autocenter) { if (strstr(autocenter, "rotate") || strstr(autocenter, "orient")) { do_rotate = 1; } if (strstr(autocenter, "translate") || strstr(autocenter, "center")) do_translate = 1; if (strstr(autocenter, "rescale") && intensity) printf("* Automatic Normalisation factor Intensity/nps = %g [n/s]\n", intensity/nps); } /* compute the rotation matrix to make mean_v along the Z-axis */ /* first normalize mean velocity (will be Z axis): c=v/|v| */ cx = mean_vx/mean_v; cy = mean_vy/mean_v; cz = mean_vz/mean_v; /* compute angle to rotate in order to come back to Z axis */ angle2z = acos(angle2z); /* in RAD */ /* get rotation axis b=c x [0 0 1] */ if (angle2z) { vec_prod(bx,by,bz, cx,cy,cz, 0,0,1); } else { /* already well oriented: nothing to do */ do_rotate = 0; } if (verbose && (do_rotate || do_translate || smooth)) { printf("* Beam will be "); if (do_translate) printf("translated (in position) "); if (do_rotate) printf("rotated (%.3g [deg] to Z-axis) ", angle2z*RAD2DEG); if (smooth) printf("smoothed "); printf("\n"); } } else { exit(printf("MCNP_input: %s: Error: file %s neutrons does not contain any neutron. \n",NAME_CURRENT_COMP, filename)); } /* reposition at start of filename (data start) */ if (fseek(hfile, begin_neutrons,SEEK_SET)) { fprintf(stderr, "MCNP_input: %s: Error: Can not reset MCNP file (fseek error at analyse). \n",NAME_CURRENT_COMP); exit_flag = 1; } #if defined (USE_MPI) if (!smooth && mpi_node_count > 1) { if (verbose) printf("MCNP_input: %s: smoothing (smooth=1) is recommended when running MPI execution.\n", NAME_CURRENT_COMP); } #endif double min_dv=fabs(max_vx-min_vx); if (min_dv > fabs(max_vy-min_vy)) min_dv = fabs(max_vy-min_vy); if (min_dv > fabs(max_vz-min_vz)) min_dv = fabs(max_vz-min_vz); min_vx = min_dv; repeat_cnt = repeat_count; #if defined (USE_MPI) repeat_cnt = ceil(1.0*repeat_cnt/mpi_node_count); #endif informed_event=informed_surface=0; /* reset ids so that new search in TRACE starts from scratch */ %} TRACE %{ char exit_flag=0; /* set to 1 if end of simulation */ int result_read=1; while(!exit_flag) { if (mcnp_create_neutron(hfile,&x,&y,&z,&vx,&vy,&vz,&t,&sx,&sy,&sz,&p,&old_surface,&surface,&informed_event,&informed_surface)) { result_read=EOF; exit_flag = 1; } else { if (do_translate) { /* translate the beam to origin */ x -= mean_x; y -= mean_y; z -= mean_z; } if (do_rotate) { /* rotate the beam so that its main axis is along Z */ double nvx, nvy, nvz; rotate(nvx,nvy,nvz, vx,vy,vz, angle2z, bx,by,bz); vx = nvx; vy=nvy; vz=nvz; rotate(nvx,nvy,nvz, x, y, z, angle2z, bx,by,bz); x = nvx; y=nvy; z=nvz; } if (intensity && nps) p *= intensity/nps/repeat_cnt; SCATTER; } #if defined (USE_MPI) if (smooth && n_count_extrapolated) #else if (smooth && rep > 1 && n_count_extrapolated) #endif { /* apply smmothing */ x += randnorm()*(max_x-min_x)/n_count_extrapolated/2; y += randnorm()*(max_y-min_y)/n_count_extrapolated/2; z += randnorm()*(max_z-min_z)/n_count_extrapolated/2; vx += randnorm()*min_vx/n_count_extrapolated/2; vy += randnorm()*min_vx/n_count_extrapolated/2; vx += randnorm()*min_vx/n_count_extrapolated/2; } if (result_read==EOF) { /* normal end of file */ rep++; if (rep <= repeat_cnt) { /* reposition at start of file (data start) */ int ret = fseek(hfile, begin_neutrons,SEEK_SET); if (ret) { fprintf(stderr, "MCNP_input: %s: Error: Can not repeat MCNP file (fseek error at repeat %d). \n",NAME_CURRENT_COMP, rep); exit_flag = 1; } else { if (verbose) printf("MCNP_input: %s: Start Neutron Number %ld (iteration %d)\n",NAME_CURRENT_COMP,begin_neutrons, rep); exit_flag=0; } } else exit_flag=1; } if (exit_flag) { if (verbose) printf(" Finishing simulation\n"); mcset_ncount(mcget_run_num()); ABSORB; } SCATTER; break; #ifdef USE_MPI /* We always repeat by the number of nodes in an MPI run */ p /= mpi_node_count; #endif } /* end while */ %} FINALLY %{ if (filename && strlen(filename) && strcmp(filename,"0") && strcmp(filename,"NULL")) { if (hfile) fclose(hfile); if (verbose) { printf("MCNP_input: %s: file %s\n", NAME_CURRENT_COMP, filename); printf(" %g neutrons generated\n", (double)mcget_ncount()); } } %} MCDISPLAY %{ /* a box and a line in the main beam direction */ double nx=mean_x, ny=mean_y, nz=mean_z; double dx=mean_dx,dy=mean_dy,dz=mean_dz; if (do_translate) nx=ny=nz=0; if (do_rotate) { dx=dy=0; dz=.1; } mcdis_box(nx,ny,nz, max_x-min_x, max_y-min_y, max_z-min_z); line( nx,ny,nz, dx,dy,dz); %} END