[ Identification | Description | Input parameters | Output parameters | Links ]

The Guide_four_side_10_shells Component

This component models a guide with four side walls surounded by up to 10 shells (every shell consists of additional four walls). In the end it forms a guide with an inner and up to 10 outer channel. As user you can controll the properties of every wall separatly. All togther you have up to 88 walls: From the inner channel 4 inner walls and four outer walls and from every outer channel 4 inner and 4 outer walls. Every single wall can have a elliptic, parabolic or straight shape. All four sides of the guide are independent from each other. In the elliptic case the side wall shape follows the equation x^2/b^2+(z+z0)^2/a^2=1 (the center of the ellipse is located at (0,-z0)). In the parabolic case the side wall shape follows the equation z=b-ax^2;mc In the straight case the side wall shape follows the equation z=l/(w2-w1)*x-w1. The shape selection is done by the focal points. The focal points are located at the z-axis and are defined by their distance to the entrance or exit window of the guide (in the following called 'focal length'). If both focal lengths for one wall are zero it will be a straight wall (entrance and exit width have to be given in the beginning). If one of the focal lengths is not zero the shape will be parabolic (only the entrance width given in the beginning is recognized; exit width will be calculated). If the the entrance focal length is zero the guide will be a focusing devise. If the exit focal length is zero it will be defocusing devise. If both focals are non zero the shape of the wall will be elliptic (only the entrance width given in the beginning is recognized; exit width will be calculated). Notice: 1.)The focal points are in general located outside the guide (positive focal lengths). Focal points inside the guide need to have negative focal lengths. 2.)The exit width parameters (w2r, w2l, h2u,h2d) are only taken into account if the walls have a linear shape. In the ellitic or parabolic case they will be ignored. For the inner channel: the outer side of each wall is calculated by the component in depentence of the wallthickness and the shape of the inner side. Each of the 88 walls can have a own indepenting reflecting layer (defined by an input file) or it can be a absorber or it can be transparent. The reflectivity properties can be given by an input file (Format [q(Angs-1) R(0-1)]) or by parameters (Qc, alpha, m, W). %BUGS This component does not work with gravitation on. This component does not work correctly in GROUP-modus.

Identification

Input parameters

Parameters in boldface are required; the others are optional.
Name Unit Description Default
RIreflect DEFAULT : no file @: (str) Name of relfectivity file for the right inner wall. Format [q(Angs-1) R(0-1)] 0
LIreflect DEFAULT : no file @: (str) Name of relfectivity file for the left inner wall. Format [q(Angs-1) R(0-1)] 0
UIreflect DEFAULT : no file @: (str) Name of relfectivity file for the top inner wall. Format [q(Angs-1) R(0-1)] 0
DIreflect DEFAULT : no file @: (str) Name of relfectivity file for the bottom inner wall. Format [q(Angs-1) R(0-1)] 0
ROreflect DEFAULT : no file @: (str) Name of relfectivity file for the right outer wall. Format [q(Angs-1) R(0-1)] 0
LOreflect DEFAULT : no file @: (str) Name of relfectivity file for the left outer wall. Format [q(Angs-1) R(0-1)] 0
UOreflect DEFAULT : no file @: (str) Name of relfectivity file for the top outer wall. Format [q(Angs-1) R(0-1)] 0
DOreflect DEFAULT : no file @: (str) Name of relfectivity file for the bottom outer wall. Format [q(Angs-1) R(0-1)] 0
RIreflect1 0
LIreflect1 0
UIreflect1 0
DIreflect1 0
ROreflect1 0
LOreflect1 0
UOreflect1 0
DOreflect1 0
RIreflect2 0
LIreflect2 0
UIreflect2 0
DIreflect2 0
ROreflect2 0
LOreflect2 0
UOreflect2 0
DOreflect2 0
RIreflect3 0
LIreflect3 0
UIreflect3 0
DIreflect3 0
ROreflect3 0
LOreflect3 0
UOreflect3 0
DOreflect3 0
RIreflect4 0
LIreflect4 0
UIreflect4 0
DIreflect4 0
ROreflect4 0
LOreflect4 0
UOreflect4 0
DOreflect4 0
RIreflect5 0
LIreflect5 0
UIreflect5 0
DIreflect5 0
ROreflect5 0
LOreflect5 0
UOreflect5 0
DOreflect5 0
RIreflect6 0
LIreflect6 0
UIreflect6 0
DIreflect6 0
ROreflect6 0
LOreflect6 0
UOreflect6 0
DOreflect6 0
RIreflect7 0
LIreflect7 0
UIreflect7 0
DIreflect7 0
ROreflect7 0
LOreflect7 0
UOreflect7 0
DOreflect7 0
RIreflect8 0
LIreflect8 0
UIreflect8 0
DIreflect8 0
ROreflect8 0
LOreflect8 0
UOreflect8 0
DOreflect8 0
RIreflect9 0
LIreflect9 0
UIreflect9 0
DIreflect9 0
ROreflect9 0
LOreflect9 0
UOreflect9 0
DOreflect9 0
RIreflect10 0
LIreflect10 0
UIreflect10 0
DIreflect10 0
ROreflect10 0
LOreflect10 0
UOreflect10 0
DOreflect10 0
w1l DEFAULT = 2.000 + @*0.002 @: [m] Width at the left guide entry (positive x-axis) 0.002
w2l DEFAULT = 2.000 + @*0.002 @: [m] Width at the left guide exit (positive x-axis) 0.002
linwl DEFAULT = 0 @ [m] left horizontal wall: distance of 1st focal point and guide entry 0
loutwl DEFAULT = 0 @ [m] left horizontal wall: distance of 2nd focal point and guide exit 0
w1r DEFAULT = 2.000 + @*0.002 @: [m] Width at the right guide entry (negative x-axis) 0.002
w2r DEFAULT = 2.000 + @*0.002 @: [m] Width at the right guide exit (negative x-axis) 0.002
linwr DEFAULT = 0 @ [m] right horizontal wall: distance of 1st focal point and guide entry 0.0
loutwr DEFAULT = 0 @ [m] right horizontal wall: distance of 2nd focal point and guide exit 0
h1u DEFAULT = 2.000 + @*0.002 @: [m] Height at the top guide entry (positive y-axis) 0.002
h2u DEFAULT = 2.000 + @*0.002 @: [m] Height at the top guide entry (positive y-axis) 0.002
linhu DEFAULT = 0 @ [m] upper vertical wall: distance of 1st focal point and guide entry 0.0
louthu DEFAULT = 0 @ [m] upper vertical wall: distance of 2nd focal point and guide exit 0
h1d DEFAULT = 2.000 + @*0.002 @: [m] Height at the bottom guide entry (negative y-axis) 0.002
h2d DEFAULT = 2.000 + @*0.002 @: [m] Height at the bottom guide entry (negative y-axis) 0.002
linhd DEFAULT = 0 @ [m] lower vertical wall: distance of 1st focal point and guide entry 0.0
louthd DEFAULT = 0 @ [m] lower vertical wall: distance of 2nd focal point and guide exit 0
l DEFAULT = 0 [m] length of guide 0
R0 DEFAULT = 0.99 [1] Low-angle reflectivity 0.99
Qcxl DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for left vertical inner wall 0.0217
Qcxr DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for right vertical inner wall 0.0217
Qcyu DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for top inner wall 0.0217
Qcyd DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for bottom inner wall 0.0217
alphaxl DEFAULT = 6.07 @: [AA] Slope of reflectivity for left vertical inner wall 6.07
alphaxr DEFAULT = 6.07 @: [AA] Slope of reflectivity for right vertical inner wall 6.07
alphayu DEFAULT = 6.07 @: [AA] Slope of reflectivity for top inner wall 6.07
alphayd DEFAULT = 6.07 @: [AA] Slope of reflectivity for bottom inner wall 6.07
Wxr DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for right inner wall 0.003
Wxl DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for left inner wall 0.003
Wyu DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for top inner wall 0.003
Wyd DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for bottom inner wall 0.003
mxr DEFAULT = -1 @: [1] m-value of material for right vertical inner wall. 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
mxl DEFAULT = -1 @: [1] m-value of material for left vertical inner wall. 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
myu DEFAULT = -1 @: [1] m-value of material for top inner wall 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
myd DEFAULT = -1 @: [1] m-value of material for bottom inner wall 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
QcxrOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for right vertical outer wall 0.0217
QcxlOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for left vertical outer wall 0.0217
QcyuOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for top outer wall 0.0217
QcydOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for bottom outer wall 0.0217
alphaxlOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for left vertical outer wall 6.07
alphaxrOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for right vertical outer wall 6.07
alphayuOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for top outer wall 6.07
alphaydOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for bottom outer wall 6.07
WxrOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for right outer wall 0.003
WxlOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for left outer wall 0.003
WyuOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for top outer wall 0.003
WydOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for bottom outer wall 0.003
mxrOW DEFAULT = -1 @: [1] m-value of material for right vertical outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
mxlOW DEFAULT = -1 @: [1] m-value of material for left vertical outer wall 0 means the wall is absorbing.(DEFAULT) -1 means the wall is transparent. 0
myuOW DEFAULT = -1 @: [1] m-value of material for top outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
mydOW DEFAULT = -1 @: [1] m-value of material for bottom outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
rwallthick DEFAULT = 0.001 m [m] thickness of the right wall 0.001
lwallthick DEFAULT = 0.001 m [m] thickness of the left wall 0.001
uwallthick DEFAULT = 0.001 m [m] thickness of the top wall 0.001
dwallthick DEFAULT = 0.001 m [m] thickness of the bottom wall 0.001
w1l1 2.002
w2l1 2.002
linwl1 0
loutwl1 0
w1r1 2.002
w2r1 2.002
linwr1 0
loutwr1 0
h1u1 2.002
h2u1 2.002
linhu1 0
louthu1 0
h1d1 2.002
h2d1 2.002
linhd1 0
louthd1 0
Qcxl1 0.0217
Qcxr1 0.0217
Qcyu1 0.0217
Qcyd1 0.0217
alphaxl1 6.07
alphaxr1 6.07
alphayu1 6.07
alphayd1 6.07
Wxr1 0.003
Wxl1 0.003
Wyu1 0.003
Wyd1 0.003
mxr1 -1
mxl1 -1
myu1 -1
myd1 -1
QcxrOW1 0.0217
QcxlOW1 0.0217
QcyuOW1 0.0217
QcydOW1 0.0217
alphaxlOW1 6.07
alphaxrOW1 6.07
alphayuOW1 6.07
alphaydOW1 6.07
WxrOW1 0.003
WxlOW1 0.003
WyuOW1 0.003
WydOW1 0.003
mxrOW1 -1
mxlOW1 -1
myuOW1 -1
mydOW1 -1
rwallthick1 0.001
lwallthick1 0.001
uwallthick1 0.001
dwallthick1 0.001
w1l2 2.004
w2l2 2.004
linwl2 0
loutwl2 0
w1r2 2.004
w2r2 2.004
linwr2 0
loutwr2 0
h1u2 2.004
h2u2 2.004
linhu2 0
louthu2 0
h1d2 2.004
h2d2 2.004
linhd2 0
louthd2 0
Qcxl2 0.0217
Qcxr2 0.0217
Qcyu2 0.0217
Qcyd2 0.0217
alphaxl2 6.07
alphaxr2 6.07
alphayu2 6.07
alphayd2 6.07
Wxr2 0.003
Wxl2 0.003
Wyu2 0.003
Wyd2 0.003
mxr2 -1
mxl2 -1
myu2 -1
myd2 -1
QcxrOW2 0.0217
QcxlOW2 0.0217
QcyuOW2 0.0217
QcydOW2 0.0217
alphaxlOW2 6.07
alphaxrOW2 6.07
alphayuOW2 6.07
alphaydOW2 6.07
WxrOW2 0.003
WxlOW2 0.003
WyuOW2 0.003
WydOW2 0.003
mxrOW2 -1
mxlOW2 -1
myuOW2 -1
mydOW2 -1
rwallthick2 0.001
lwallthick2 0.001
uwallthick2 0.001
dwallthick2 0.001
w1l3 2.006
w2l3 2.006
linwl3 0
loutwl3 0
w1r3 2.006
w2r3 2.006
linwr3 0
loutwr3 0
h1u3 2.006
h2u3 2.006
linhu3 0
louthu3 0
h1d3 2.006
h2d3 2.006
linhd3 0
louthd3 0
Qcxl3 0.0217
Qcxr3 0.0217
Qcyu3 0.0217
Qcyd3 0.0217
alphaxl3 6.07
alphaxr3 6.07
alphayu3 6.07
alphayd3 6.07
Wxr3 0.003
Wxl3 0.003
Wyu3 0.003
Wyd3 0.003
mxr3 -1
mxl3 -1
myu3 -1
myd3 -1
QcxrOW3 0.0217
QcxlOW3 0.0217
QcyuOW3 0.0217
QcydOW3 0.0217
alphaxlOW3 6.07
alphaxrOW3 6.07
alphayuOW3 6.07
alphaydOW3 6.07
WxrOW3 0.003
WxlOW3 0.003
WyuOW3 0.003
WydOW3 0.003
mxrOW3 -1
mxlOW3 -1
myuOW3 -1
mydOW3 -1
rwallthick3 0.001
lwallthick3 0.001
uwallthick3 0.001
dwallthick3 0.001
w1l4 2.008
w2l4 2.008
linwl4 0
loutwl4 0
w1r4 2.008
w2r4 2.008
linwr4 0
loutwr4 0
h1u4 2.008
h2u4 2.008
linhu4 0
louthu4 0
h1d4 2.008
h2d4 2.008
linhd4 0
louthd4 0
Qcxl4 0.0217
Qcxr4 0.0217
Qcyu4 0.0217
Qcyd4 0.0217
alphaxl4 6.07
alphaxr4 6.07
alphayu4 6.07
alphayd4 6.07
Wxr4 0.003
Wxl4 0.003
Wyu4 0.003
Wyd4 0.003
mxr4 -1
mxl4 -1
myu4 -1
myd4 -1
QcxrOW4 0.0217
QcxlOW4 0.0217
QcyuOW4 0.0217
QcydOW4 0.0217
alphaxlOW4 6.07
alphaxrOW4 6.07
alphayuOW4 6.07
alphaydOW4 6.07
WxrOW4 0.003
WxlOW4 0.003
WyuOW4 0.003
WydOW4 0.003
mxrOW4 -1
mxlOW4 -1
myuOW4 -1
mydOW4 -1
rwallthick4 0.001
lwallthick4 0.001
uwallthick4 0.001
dwallthick4 0.001
w1l5 2.01
w2l5 2.01
linwl5 0
loutwl5 0
w1r5 2.01
w2r5 2.01
linwr5 0
loutwr5 0
h1u5 2.01
h2u5 2.01
linhu5 0
louthu5 0
h1d5 2.01
h2d5 2.01
linhd5 0
louthd5 0
Qcxl5 0.0217
Qcxr5 0.0217
Qcyu5 0.0217
Qcyd5 0.0217
alphaxl5 6.07
alphaxr5 6.07
alphayu5 6.07
alphayd5 6.07
Wxr5 0.003
Wxl5 0.003
Wyu5 0.003
Wyd5 0.003
mxr5 -1
mxl5 -1
myu5 -1
myd5 -1
QcxrOW5 0.0217
QcxlOW5 0.0217
QcyuOW5 0.0217
QcydOW5 0.0217
alphaxlOW5 6.07
alphaxrOW5 6.07
alphayuOW5 6.07
alphaydOW5 6.07
WxrOW5 0.003
WxlOW5 0.003
WyuOW5 0.003
WydOW5 0.003
mxrOW5 -1
mxlOW5 -1
myuOW5 -1
mydOW5 -1
rwallthick5 0.001
lwallthick5 0.001
uwallthick5 0.001
dwallthick5 0.001
w1l6 2.012
w2l6 2.012
linwl6 0
loutwl6 0
w1r6 2.012
w2r6 2.012
linwr6 0
loutwr6 0
h1u6 2.012
h2u6 2.012
linhu6 0
louthu6 0
h1d6 2.012
h2d6 2.012
linhd6 0
louthd6 0
Qcxl6 0.0217
Qcxr6 0.0217
Qcyu6 0.0217
Qcyd6 0.0217
alphaxl6 6.07
alphaxr6 6.07
alphayu6 6.07
alphayd6 6.07
Wxr6 0.003
Wxl6 0.003
Wyu6 0.003
Wyd6 0.003
mxr6 -1
mxl6 -1
myu6 -1
myd6 -1
QcxrOW6 0.0217
QcxlOW6 0.0217
QcyuOW6 0.0217
QcydOW6 0.0217
alphaxlOW6 6.07
alphaxrOW6 6.07
alphayuOW6 6.07
alphaydOW6 6.07
WxrOW6 0.003
WxlOW6 0.003
WyuOW6 0.003
WydOW6 0.003
mxrOW6 -1
mxlOW6 -1
myuOW6 -1
mydOW6 -1
rwallthick6 0.001
lwallthick6 0.001
uwallthick6 0.001
dwallthick6 0.001
w1l7 2.014
w2l7 2.014
linwl7 0
loutwl7 0
w1r7 2.014
w2r7 2.014
linwr7 0
loutwr7 0
h1u7 2.014
h2u7 2.014
linhu7 0
louthu7 0
h1d7 2.014
h2d7 2.014
linhd7 0
louthd7 0
Qcxl7 0.0217
Qcxr7 0.0217
Qcyu7 0.0217
Qcyd7 0.0217
alphaxl7 6.07
alphaxr7 6.07
alphayu7 6.07
alphayd7 6.07
Wxr7 0.003
Wxl7 0.003
Wyu7 0.003
Wyd7 0.003
mxr7 -1
mxl7 -1
myu7 -1
myd7 -1
QcxrOW7 0.0217
QcxlOW7 0.0217
QcyuOW7 0.0217
QcydOW7 0.0217
alphaxlOW7 6.07
alphaxrOW7 6.07
alphayuOW7 6.07
alphaydOW7 6.07
WxrOW7 0.003
WxlOW7 0.003
WyuOW7 0.003
WydOW7 0.003
mxrOW7 -1
mxlOW7 -1
myuOW7 -1
mydOW7 -1
rwallthick7 0.001
lwallthick7 0.001
uwallthick7 0.001
dwallthick7 0.001
w1l8 2.016
w2l8 2.016
linwl8 0
loutwl8 0
w1r8 2.016
w2r8 2.016
linwr8 0
loutwr8 0
h1u8 2.016
h2u8 2.016
linhu8 0
louthu8 0
h1d8 2.016
h2d8 2.016
linhd8 0
louthd8 0
Qcxl8 0.0217
Qcxr8 0.0217
Qcyu8 0.0217
Qcyd8 0.0217
alphaxl8 6.07
alphaxr8 6.07
alphayu8 6.07
alphayd8 6.07
Wxr8 0.003
Wxl8 0.003
Wyu8 0.003
Wyd8 0.003
mxr8 -1
mxl8 -1
myu8 -1
myd8 -1
QcxrOW8 0.0217
QcxlOW8 0.0217
QcyuOW8 0.0217
QcydOW8 0.0217
alphaxlOW8 6.07
alphaxrOW8 6.07
alphayuOW8 6.07
alphaydOW8 6.07
WxrOW8 0.003
WxlOW8 0.003
WyuOW8 0.003
WydOW8 0.003
mxrOW8 -1
mxlOW8 -1
myuOW8 -1
mydOW8 -1
rwallthick8 0.001
lwallthick8 0.001
uwallthick8 0.001
dwallthick8 0.001
w1l9 2.018
w2l9 2.018
linwl9 0
loutwl9 0
w1r9 2.018
w2r9 2.018
linwr9 0
loutwr9 0
h1u9 2.018
h2u9 2.018
linhu9 0
louthu9 0
h1d9 2.018
h2d9 2.018
linhd9 0
louthd9 0
Qcxl9 0.0217
Qcxr9 0.0217
Qcyu9 0.0217
Qcyd9 0.0217
alphaxl9 6.07
alphaxr9 6.07
alphayu9 6.07
alphayd9 6.07
Wxr9 0.003
Wxl9 0.003
Wyu9 0.003
Wyd9 0.003
mxr9 -1
mxl9 -1
myu9 -1
myd9 -1
QcxrOW9 0.0217
QcxlOW9 0.0217
QcyuOW9 0.0217
QcydOW9 0.0217
alphaxlOW9 6.07
alphaxrOW9 6.07
alphayuOW9 6.07
alphaydOW9 6.07
WxrOW9 0.003
WxlOW9 0.003
WyuOW9 0.003
WydOW9 0.003
mxrOW9 -1
mxlOW9 -1
myuOW9 -1
mydOW9 -1
rwallthick9 0.001
lwallthick9 0.001
uwallthick9 0.001
dwallthick9 0.001
w1l10 2.02
w2l10 2.02
linwl10 0
loutwl10 0
w1r10 2.02
w2r10 2.02
linwr10 0
loutwr10 0
h1u10 2.02
h2u10 2.02
linhu10 0
louthu10 0
h1d10 2.02
h2d10 2.02
linhd10 0
louthd10 0
Qcxl10 0.0217
Qcxr10 0.0217
Qcyu10 0.0217
Qcyd10 0.0217
alphaxl10 6.07
alphaxr10 6.07
alphayu10 6.07
alphayd10 6.07
Wxr10 0.003
Wxl10 0.003
Wyu10 0.003
Wyd10 0.003
mxr10 -1
mxl10 -1
myu10 -1
myd10 -1
QcxrOW10 0.0217
QcxlOW10 0.0217
QcyuOW10 0.0217
QcydOW10 0.0217
alphaxlOW10 6.07
alphaxrOW10 6.07
alphayuOW10 6.07
alphaydOW10 6.07
WxrOW10 0.003
WxlOW10 0.003
WyuOW10 0.003
WydOW10 0.003
mxrOW10 -1
mxlOW10 -1
myuOW10 -1
mydOW10 -1
rwallthick10 0.001
lwallthick10 0.001
uwallthick10 0.001
dwallthick10 0.001

Output parameters

Name Unit Description Default
w1rwt  
w1lwt  
h1uwt  
h1dwt  
w2rwt  
w2lwt  
h2uwt  
h2dwt  
pawr  
pawl  
pbwr  
pbwl  
pahu  
pahd  
pbhu  
pbhd  
awl  
bwl  
awr  
bwr  
ahu  
bhu  
ahd  
bhd  
awlwt  
bwlwt  
awrwt  
bwrwt  
ahuwt  
bhuwt  
ahdwt  
bhdwt  
pawrwt  
pawlwt  
pbwrwt  
pbwlwt  
pahuwt  
pahdwt  
pbhuwt  
pbhdwt  
t1  
t2w1r  
t2w1l  
t2h1u  
t2h1d  
t2w1rwt  
t2w1lwt  
t2h1uwt  
t2h1dwt  
a2wlwt  
b2wlwt  
a2wrwt  
b2wrwt  
a2huwt  
b2huwt  
a2hdwt  
b2hdwt  
a2wl  
b2wl  
a2wr  
b2wr  
a2hu  
b2hu  
a2hd  
b2hd  
mru1  
mru2  
nru1  
nru2  
mrd1  
mrd2  
nrd1  
nrd2  
mlu1  
mlu2  
nlu1  
nlu2  
mld1  
mld2  
nld1  
nld2  
z0wr  
z0wl  
z0hu  
z0hd  
p2parawr  
p2parawl  
p2parahu  
p2parahd  
p2parawrwt  
p2parawlwt  
p2parahuwt  
p2parahdwt  
m  
n  
nz  
nx  
ny  
n2  
pf  
vxin  
vyin  
vzin  
q  
xtest  
ytest  
riTable  
liTable  
uiTable  
diTable  
roTable  
loTable  
uoTable  
doTable  
w1rwt1  
w1lwt1  
h1uwt1  
h1dwt1  
w2rwt1  
w2lwt1  
h2uwt1  
h2dwt1  
pawr1  
pawl1  
pbwr1  
pbwl1  
pahu1  
pahd1  
pbhu1  
pbhd1  
awl1  
bwl1  
awr1  
bwr1  
ahu1  
bhu1  
ahd1  
bhd1  
awlwt1  
bwlwt1  
awrwt1  
bwrwt1  
ahuwt1  
bhuwt1  
ahdwt1  
bhdwt1  
pawrwt1  
pawlwt1  
pbwrwt1  
pbwlwt1  
pahuwt1  
pahdwt1  
pbhuwt1  
pbhdwt1  
t2w1r1  
t2w1l1  
t2h1u1  
t2h1d1  
t2w1rwt1  
t2w1lwt1  
t2h1uwt1  
t2h1dwt1  
a2wlwt1  
b2wlwt1  
a2wrwt1  
b2wrwt1  
a2huwt1  
b2huwt1  
a2hdwt1  
b2hdwt1  
a2wl1  
b2wl1  
a2wr1  
b2wr1  
a2hu1  
b2hu1  
a2hd1  
b2hd1  
mru11  
mru21  
nru11  
nru21  
mrd11  
mrd21  
nrd11  
nrd21  
mlu11  
mlu21  
nlu11  
nlu21  
mld11  
mld21  
nld11  
nld21  
z0wr1  
z0wl1  
z0hu1  
z0hd1  
p2parawr1  
p2parawl1  
p2parahu1  
p2parahd1  
p2parawrwt1  
p2parawlwt1  
p2parahuwt1  
p2parahdwt1  
riTable1  
liTable1  
uiTable1  
diTable1  
roTable1  
loTable1  
uoTable1  
doTable1  
w1rwt2  
w1lwt2  
h1uwt2  
h1dwt2  
w2rwt2  
w2lwt2  
h2uwt2  
h2dwt2  
pawr2  
pawl2  
pbwr2  
pbwl2  
pahu2  
pahd2  
pbhu2  
pbhd2  
awl2  
bwl2  
awr2  
bwr2  
ahu2  
bhu2  
ahd2  
bhd2  
awlwt2  
bwlwt2  
awrwt2  
bwrwt2  
ahuwt2  
bhuwt2  
ahdwt2  
bhdwt2  
pawrwt2  
pawlwt2  
pbwrwt2  
pbwlwt2  
pahuwt2  
pahdwt2  
pbhuwt2  
pbhdwt2  
t2w1r2  
t2w1l2  
t2h1u2  
t2h1d2  
t2w1rwt2  
t2w1lwt2  
t2h1uwt2  
t2h1dwt2  
a2wlwt2  
b2wlwt2  
a2wrwt2  
b2wrwt2  
a2huwt2  
b2huwt2  
a2hdwt2  
b2hdwt2  
a2wl2  
b2wl2  
a2wr2  
b2wr2  
a2hu2  
b2hu2  
a2hd2  
b2hd2  
mru12  
mru22  
nru12  
nru22  
mrd12  
mrd22  
nrd12  
nrd22  
mlu12  
mlu22  
nlu12  
nlu22  
mld12  
mld22  
nld12  
nld22  
z0wr2  
z0wl2  
z0hu2  
z0hd2  
p2parawr2  
p2parawl2  
p2parahu2  
p2parahd2  
p2parawrwt2  
p2parawlwt2  
p2parahuwt2  
p2parahdwt2  
riTable2  
liTable2  
uiTable2  
diTable2  
roTable2  
loTable2  
uoTable2  
doTable2  
t2w1r3  
t2w1l3  
t2h1u3  
t2h1d3  
t2w1rwt3  
t2w1lwt3  
t2h1uwt3  
t2h1dwt3  
t2w1r4  
t2w1l4  
t2h1u4  
t2h1d4  
t2w1rwt4  
t2w1lwt4  
t2h1uwt4  
t2h1dwt4  
t2w1r5  
t2w1l5  
t2h1u5  
t2h1d5  
t2w1rwt5  
t2w1lwt5  
t2h1uwt5  
t2h1dwt5  
t2w1r6  
t2w1l6  
t2h1u6  
t2h1d6  
t2w1rwt6  
t2w1lwt6  
t2h1uwt6  
t2h1dwt6  
t2w1r7  
t2w1l7  
t2h1u7  
t2h1d7  
t2w1rwt7  
t2w1lwt7  
t2h1uwt7  
t2h1dwt7  
t2w1r8  
t2w1l8  
t2h1u8  
t2h1d8  
t2w1rwt8  
t2w1lwt8  
t2h1uwt8  
t2h1dwt8  
t2w1r9  
t2w1l9  
t2h1u9  
t2h1d9  
t2w1rwt9  
t2w1lwt9  
t2h1uwt9  
t2h1dwt9  
t2w1r10  
t2w1l10  
t2h1u10  
t2h1d10  
t2w1rwt10  
t2w1lwt10  
t2h1uwt10  
t2h1dwt10  
w1rwt3  
w1lwt3  
h1uwt3  
h1dwt3  
w2rwt3  
w2lwt3  
h2uwt3  
h2dwt3  
pawr3  
pawl3  
pbwr3  
pbwl3  
pahu3  
pahd3  
pbhu3  
pbhd3  
awl3  
bwl3  
awr3  
bwr3  
ahu3  
bhu3  
ahd3  
bhd3  
awlwt3  
bwlwt3  
awrwt3  
bwrwt3  
ahuwt3  
bhuwt3  
ahdwt3  
bhdwt3  
pawrwt3  
pawlwt3  
pbwrwt3  
pbwlwt3  
pahuwt3  
pahdwt3  
pbhuwt3  
pbhdwt3  
a2wlwt3  
b2wlwt3  
a2wrwt3  
b2wrwt3  
a2huwt3  
b2huwt3  
a2hdwt3  
b2hdwt3  
a2wl3  
b2wl3  
a2wr3  
b2wr3  
a2hu3  
b2hu3  
a2hd3  
b2hd3  
mru13  
mru23  
nru13  
nru23  
mrd13  
mrd23  
nrd13  
nrd23  
mlu13  
mlu23  
nlu13  
nlu23  
mld13  
mld23  
nld13  
nld23  
z0wr3  
z0wl3  
z0hu3  
z0hd3  
p2parawr3  
p2parawl3  
p2parahu3  
p2parahd3  
p2parawrwt3  
p2parawlwt3  
p2parahuwt3  
p2parahdwt3  
riTable3  
liTable3  
uiTable3  
diTable3  
roTable3  
loTable3  
uoTable3  
doTable3  
w1rwt4  
w1lwt4  
h1uwt4  
h1dwt4  
w2rwt4  
w2lwt4  
h2uwt4  
h2dwt4  
pawr4  
pawl4  
pbwr4  
pbwl4  
pahu4  
pahd4  
pbhu4  
pbhd4  
awl4  
bwl4  
awr4  
bwr4  
ahu4  
bhu4  
ahd4  
bhd4  
awlwt4  
bwlwt4  
awrwt4  
bwrwt4  
ahuwt4  
bhuwt4  
ahdwt4  
bhdwt4  
pawrwt4  
pawlwt4  
pbwrwt4  
pbwlwt4  
pahuwt4  
pahdwt4  
pbhuwt4  
pbhdwt4  
a2wlwt4  
b2wlwt4  
a2wrwt4  
b2wrwt4  
a2huwt4  
b2huwt4  
a2hdwt4  
b2hdwt4  
a2wl4  
b2wl4  
a2wr4  
b2wr4  
a2hu4  
b2hu4  
a2hd4  
b2hd4  
mru14  
mru24  
nru14  
nru24  
mrd14  
mrd24  
nrd14  
nrd24  
mlu14  
mlu24  
nlu14  
nlu24  
mld14  
mld24  
nld14  
nld24  
z0wr4  
z0wl4  
z0hu4  
z0hd4  
p2parawr4  
p2parawl4  
p2parahu4  
p2parahd4  
p2parawrwt4  
p2parawlwt4  
p2parahuwt4  
p2parahdwt4  
riTable4  
liTable4  
uiTable4  
diTable4  
roTable4  
loTable4  
uoTable4  
doTable4  
w1rwt5  
w1lwt5  
h1uwt5  
h1dwt5  
w2rwt5  
w2lwt5  
h2uwt5  
h2dwt5  
pawr5  
pawl5  
pbwr5  
pbwl5  
pahu5  
pahd5  
pbhu5  
pbhd5  
awl5  
bwl5  
awr5  
bwr5  
ahu5  
bhu5  
ahd5  
bhd5  
awlwt5  
bwlwt5  
awrwt5  
bwrwt5  
ahuwt5  
bhuwt5  
ahdwt5  
bhdwt5  
pawrwt5  
pawlwt5  
pbwrwt5  
pbwlwt5  
pahuwt5  
pahdwt5  
pbhuwt5  
pbhdwt5  
a2wlwt5  
b2wlwt5  
a2wrwt5  
b2wrwt5  
a2huwt5  
b2huwt5  
a2hdwt5  
b2hdwt5  
a2wl5  
b2wl5  
a2wr5  
b2wr5  
a2hu5  
b2hu5  
a2hd5  
b2hd5  
mru15  
mru25  
nru15  
nru25  
mrd15  
mrd25  
nrd15  
nrd25  
mlu15  
mlu25  
nlu15  
nlu25  
mld15  
mld25  
nld15  
nld25  
z0wr5  
z0wl5  
z0hu5  
z0hd5  
p2parawr5  
p2parawl5  
p2parahu5  
p2parahd5  
p2parawrwt5  
p2parawlwt5  
p2parahuwt5  
p2parahdwt5  
riTable5  
liTable5  
uiTable5  
diTable5  
roTable5  
loTable5  
uoTable5  
doTable5  
w1rwt6  
w1lwt6  
h1uwt6  
h1dwt6  
w2rwt6  
w2lwt6  
h2uwt6  
h2dwt6  
pawr6  
pawl6  
pbwr6  
pbwl6  
pahu6  
pahd6  
pbhu6  
pbhd6  
awl6  
bwl6  
awr6  
bwr6  
ahu6  
bhu6  
ahd6  
bhd6  
awlwt6  
bwlwt6  
awrwt6  
bwrwt6  
ahuwt6  
bhuwt6  
ahdwt6  
bhdwt6  
pawrwt6  
pawlwt6  
pbwrwt6  
pbwlwt6  
pahuwt6  
pahdwt6  
pbhuwt6  
pbhdwt6  
a2wlwt6  
b2wlwt6  
a2wrwt6  
b2wrwt6  
a2huwt6  
b2huwt6  
a2hdwt6  
b2hdwt6  
a2wl6  
b2wl6  
a2wr6  
b2wr6  
a2hu6  
b2hu6  
a2hd6  
b2hd6  
mru16  
mru26  
nru16  
nru26  
mrd16  
mrd26  
nrd16  
nrd26  
mlu16  
mlu26  
nlu16  
nlu26  
mld16  
mld26  
nld16  
nld26  
z0wr6  
z0wl6  
z0hu6  
z0hd6  
p2parawr6  
p2parawl6  
p2parahu6  
p2parahd6  
p2parawrwt6  
p2parawlwt6  
p2parahuwt6  
p2parahdwt6  
riTable6  
liTable6  
uiTable6  
diTable6  
roTable6  
loTable6  
uoTable6  
doTable6  
w1rwt7  
w1lwt7  
h1uwt7  
h1dwt7  
w2rwt7  
w2lwt7  
h2uwt7  
h2dwt7  
pawr7  
pawl7  
pbwr7  
pbwl7  
pahu7  
pahd7  
pbhu7  
pbhd7  
awl7  
bwl7  
awr7  
bwr7  
ahu7  
bhu7  
ahd7  
bhd7  
awlwt7  
bwlwt7  
awrwt7  
bwrwt7  
ahuwt7  
bhuwt7  
ahdwt7  
bhdwt7  
pawrwt7  
pawlwt7  
pbwrwt7  
pbwlwt7  
pahuwt7  
pahdwt7  
pbhuwt7  
pbhdwt7  
a2wlwt7  
b2wlwt7  
a2wrwt7  
b2wrwt7  
a2huwt7  
b2huwt7  
a2hdwt7  
b2hdwt7  
a2wl7  
b2wl7  
a2wr7  
b2wr7  
a2hu7  
b2hu7  
a2hd7  
b2hd7  
mru17  
mru27  
nru17  
nru27  
mrd17  
mrd27  
nrd17  
nrd27  
mlu17  
mlu27  
nlu17  
nlu27  
mld17  
mld27  
nld17  
nld27  
z0wr7  
z0wl7  
z0hu7  
z0hd7  
p2parawr7  
p2parawl7  
p2parahu7  
p2parahd7  
p2parawrwt7  
p2parawlwt7  
p2parahuwt7  
p2parahdwt7  
riTable7  
liTable7  
uiTable7  
diTable7  
roTable7  
loTable7  
uoTable7  
doTable7  
w1rwt8  
w1lwt8  
h1uwt8  
h1dwt8  
w2rwt8  
w2lwt8  
h2uwt8  
h2dwt8  
pawr8  
pawl8  
pbwr8  
pbwl8  
pahu8  
pahd8  
pbhu8  
pbhd8  
awl8  
bwl8  
awr8  
bwr8  
ahu8  
bhu8  
ahd8  
bhd8  
awlwt8  
bwlwt8  
awrwt8  
bwrwt8  
ahuwt8  
bhuwt8  
ahdwt8  
bhdwt8  
pawrwt8  
pawlwt8  
pbwrwt8  
pbwlwt8  
pahuwt8  
pahdwt8  
pbhuwt8  
pbhdwt8  
a2wlwt8  
b2wlwt8  
a2wrwt8  
b2wrwt8  
a2huwt8  
b2huwt8  
a2hdwt8  
b2hdwt8  
a2wl8  
b2wl8  
a2wr8  
b2wr8  
a2hu8  
b2hu8  
a2hd8  
b2hd8  
mru18  
mru28  
nru18  
nru28  
mrd18  
mrd28  
nrd18  
nrd28  
mlu18  
mlu28  
nlu18  
nlu28  
mld18  
mld28  
nld18  
nld28  
z0wr8  
z0wl8  
z0hu8  
z0hd8  
p2parawr8  
p2parawl8  
p2parahu8  
p2parahd8  
p2parawrwt8  
p2parawlwt8  
p2parahuwt8  
p2parahdwt8  
riTable8  
liTable8  
uiTable8  
diTable8  
roTable8  
loTable8  
uoTable8  
doTable8  
w1rwt9  
w1lwt9  
h1uwt9  
h1dwt9  
w2rwt9  
w2lwt9  
h2uwt9  
h2dwt9  
pawr9  
pawl9  
pbwr9  
pbwl9  
pahu9  
pahd9  
pbhu9  
pbhd9  
awl9  
bwl9  
awr9  
bwr9  
ahu9  
bhu9  
ahd9  
bhd9  
awlwt9  
bwlwt9  
awrwt9  
bwrwt9  
ahuwt9  
bhuwt9  
ahdwt9  
bhdwt9  
pawrwt9  
pawlwt9  
pbwrwt9  
pbwlwt9  
pahuwt9  
pahdwt9  
pbhuwt9  
pbhdwt9  
a2wlwt9  
b2wlwt9  
a2wrwt9  
b2wrwt9  
a2huwt9  
b2huwt9  
a2hdwt9  
b2hdwt9  
a2wl9  
b2wl9  
a2wr9  
b2wr9  
a2hu9  
b2hu9  
a2hd9  
b2hd9  
mru19  
mru29  
nru19  
nru29  
mrd19  
mrd29  
nrd19  
nrd29  
mlu19  
mlu29  
nlu19  
nlu29  
mld19  
mld29  
nld19  
nld29  
z0wr9  
z0wl9  
z0hu9  
z0hd9  
p2parawr9  
p2parawl9  
p2parahu9  
p2parahd9  
p2parawrwt9  
p2parawlwt9  
p2parahuwt9  
p2parahdwt9  
riTable9  
liTable9  
uiTable9  
diTable9  
roTable9  
loTable9  
uoTable9  
doTable9  
w1rwt10  
w1lwt10  
h1uwt10  
h1dwt10  
w2rwt10  
w2lwt10  
h2uwt10  
h2dwt10  
pawr10  
pawl10  
pbwr10  
pbwl10  
pahu10  
pahd10  
pbhu10  
pbhd10  
awl10  
bwl10  
awr10  
bwr10  
ahu10  
bhu10  
ahd10  
bhd10  
awlwt10  
bwlwt10  
awrwt10  
bwrwt10  
ahuwt10  
bhuwt10  
ahdwt10  
bhdwt10  
pawrwt10  
pawlwt10  
pbwrwt10  
pbwlwt10  
pahuwt10  
pahdwt10  
pbhuwt10  
pbhdwt10  
a2wlwt10  
b2wlwt10  
a2wrwt10  
b2wrwt10  
a2huwt10  
b2huwt10  
a2hdwt10  
b2hdwt10  
a2wl10  
b2wl10  
a2wr10  
b2wr10  
a2hu10  
b2hu10  
a2hd10  
b2hd10  
mru110  
mru210  
nru110  
nru210  
mrd110  
mrd210  
nrd110  
nrd210  
mlu110  
mlu210  
nlu110  
nlu210  
mld110  
mld210  
nld110  
nld210  
z0wr10  
z0wl10  
z0hu10  
z0hd10  
p2parawr10  
p2parawl10  
p2parahu10  
p2parahd10  
p2parawrwt10  
p2parawlwt10  
p2parahuwt10  
p2parahdwt10  
riTable10  
liTable10  
uiTable10  
diTable10  
roTable10  
loTable10  
uoTable10  
doTable10  

Links


[ Identification | Description | Input parameters | Output parameters | Links ]

Generated automatically by McDoc, Peter Willendrup <peter.willendrup@risoe.dk> / Tue Sep 7 12:28:42 2010